TPTP Problem File: GEO136-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO136-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Underlying curve and one pair of points sufficient for ordering
% Version : [EHK99] axioms.
% English : The underlying curve and one pair of points are sufficient for
% the ordering of the points on the oriented curve.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v2.4.0
% Syntax : Number of clauses : 115 ( 4 unt; 47 nHn; 105 RR)
% Number of literals : 353 ( 52 equ; 186 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 15 ( 14 usr; 0 prp; 1-4 aty)
% Number of functors : 31 ( 31 usr; 5 con; 0-5 aty)
% Number of variables : 276 ( 17 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO136+1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%----Include axioms of betweenness for simple curves
include('Axioms/GEO004-1.ax').
%----Include oriented curve axioms
include('Axioms/GEO004-2.ax').
%--------------------------------------------------------------------------
cnf(theorem_4_19_133,negated_conjecture,
ordered_by(sk25,sk26,sk27) ).
cnf(theorem_4_19_134,negated_conjecture,
( ordered_by(sk25,sk28,sk29)
| between(sk25,sk28,sk26,sk27) ) ).
cnf(theorem_4_19_135,negated_conjecture,
( ordered_by(sk25,sk28,sk29)
| between(sk25,sk28,sk29,sk27)
| between(sk25,sk28,sk27,sk29)
| sk27 = sk29 ) ).
cnf(theorem_4_19_136,negated_conjecture,
( ordered_by(sk25,sk28,sk29)
| ~ ordered_by(sk25,sk28,sk29) ) ).
cnf(theorem_4_19_137,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| ~ between(sk25,sk28,sk29,sk27)
| between(sk25,sk28,sk26,sk27) ) ).
cnf(theorem_4_19_138,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| ~ between(sk25,sk28,sk29,sk27)
| between(sk25,sk28,sk29,sk27)
| between(sk25,sk28,sk27,sk29)
| sk27 = sk29 ) ).
cnf(theorem_4_19_139,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| ~ between(sk25,sk28,sk27,sk29)
| between(sk25,sk28,sk26,sk27) ) ).
cnf(theorem_4_19_140,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| sk27 != sk29
| between(sk25,sk28,sk26,sk27) ) ).
cnf(theorem_4_19_141,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| ~ between(sk25,sk28,sk27,sk29)
| between(sk25,sk28,sk29,sk27)
| between(sk25,sk28,sk27,sk29)
| sk27 = sk29 ) ).
cnf(theorem_4_19_142,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| sk27 != sk29
| between(sk25,sk28,sk29,sk27)
| between(sk25,sk28,sk27,sk29)
| sk27 = sk29 ) ).
cnf(theorem_4_19_143,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| ~ between(sk25,sk28,sk29,sk27)
| ~ ordered_by(sk25,sk28,sk29) ) ).
cnf(theorem_4_19_144,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| ~ between(sk25,sk28,sk27,sk29)
| ~ ordered_by(sk25,sk28,sk29) ) ).
cnf(theorem_4_19_145,negated_conjecture,
( ~ between(sk25,sk28,sk26,sk27)
| sk27 != sk29
| ~ ordered_by(sk25,sk28,sk29) ) ).
cnf(theorem_4_19_146,negated_conjecture,
( ~ between(sk25,sk26,sk28,sk29)
| ~ between(sk25,sk26,sk28,sk27) ) ).
cnf(theorem_4_19_147,negated_conjecture,
( ~ between(sk25,sk26,sk28,sk29)
| ~ between(sk25,sk26,sk27,sk28) ) ).
cnf(theorem_4_19_148,negated_conjecture,
( ~ between(sk25,sk26,sk28,sk29)
| sk27 != sk28 ) ).
cnf(theorem_4_19_149,negated_conjecture,
( sk26 != sk28
| ~ between(sk25,sk26,sk29,sk27) ) ).
cnf(theorem_4_19_150,negated_conjecture,
( sk26 != sk28
| ~ between(sk25,sk26,sk27,sk29) ) ).
cnf(theorem_4_19_151,negated_conjecture,
( sk26 != sk28
| sk27 != sk29 ) ).
%--------------------------------------------------------------------------