TPTP Problem File: GEO120-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO120-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Oriented curve finishing point is endpoint of underlying curve
% Version : [EHK99] axioms.
% English :
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v6.0.0, 0.90 v5.5.0, 1.00 v4.0.1, 0.91 v3.7.0, 0.90 v3.5.0, 0.91 v3.4.0, 0.92 v3.3.0, 0.93 v3.2.0, 0.92 v3.1.0, 1.00 v2.4.0
% Syntax : Number of clauses : 98 ( 5 unt; 42 nHn; 88 RR)
% Number of literals : 301 ( 40 equ; 153 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-4 aty)
% Number of functors : 28 ( 28 usr; 2 con; 0-5 aty)
% Number of variables : 276 ( 17 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO120-1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%----Include axioms of betweenness for simple curves
include('Axioms/GEO004-1.ax').
%----Include oriented curve axioms
include('Axioms/GEO004-2.ax').
%--------------------------------------------------------------------------
cnf(theorem_4_6_2_133,negated_conjecture,
finish_point(sk26,sk25) ).
cnf(theorem_4_6_2_134,negated_conjecture,
~ end_point(sk26,underlying_curve(sk25)) ).
%--------------------------------------------------------------------------