TPTP Problem File: GEO116-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO116-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Open curve betweenness property for three points
% Version : [EHK99] axioms.
% English : If P, Q and R are points on an open curve c then Q is not between
% P and R wrt. c, iff P is between R and Q wrt. c or R is between
% Q and P wrt. c or at least two of the points are identical.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v2.4.0
% Syntax : Number of clauses : 112 ( 7 unt; 48 nHn; 102 RR)
% Number of literals : 351 ( 64 equ; 164 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-4 aty)
% Number of functors : 30 ( 30 usr; 4 con; 0-5 aty)
% Number of variables : 276 ( 17 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO116+1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%----Include axioms of betweenness for simple curves
include('Axioms/GEO004-1.ax').
%----Include oriented curve axioms
include('Axioms/GEO004-2.ax').
%--------------------------------------------------------------------------
cnf(corolary_3_9_77,negated_conjecture,
open(sk15) ).
cnf(corolary_3_9_78,negated_conjecture,
incident_c(sk16,sk15) ).
cnf(corolary_3_9_79,negated_conjecture,
incident_c(sk17,sk15) ).
cnf(corolary_3_9_80,negated_conjecture,
incident_c(sk18,sk15) ).
cnf(corolary_3_9_81,negated_conjecture,
( ~ between_c(sk15,sk16,sk17,sk18)
| between_c(sk15,sk18,sk16,sk17)
| between_c(sk15,sk17,sk18,sk16)
| sk18 = sk17
| sk18 = sk16
| sk16 = sk17 ) ).
cnf(corolary_3_9_82,negated_conjecture,
( ~ between_c(sk15,sk16,sk17,sk18)
| between_c(sk15,sk16,sk17,sk18) ) ).
cnf(corolary_3_9_83,negated_conjecture,
( ~ between_c(sk15,sk18,sk16,sk17)
| between_c(sk15,sk18,sk16,sk17)
| between_c(sk15,sk17,sk18,sk16)
| sk18 = sk17
| sk18 = sk16
| sk16 = sk17 ) ).
cnf(corolary_3_9_84,negated_conjecture,
( ~ between_c(sk15,sk17,sk18,sk16)
| between_c(sk15,sk18,sk16,sk17)
| between_c(sk15,sk17,sk18,sk16)
| sk18 = sk17
| sk18 = sk16
| sk16 = sk17 ) ).
cnf(corolary_3_9_85,negated_conjecture,
( sk18 != sk17
| between_c(sk15,sk18,sk16,sk17)
| between_c(sk15,sk17,sk18,sk16)
| sk18 = sk17
| sk18 = sk16
| sk16 = sk17 ) ).
cnf(corolary_3_9_86,negated_conjecture,
( sk18 != sk16
| between_c(sk15,sk18,sk16,sk17)
| between_c(sk15,sk17,sk18,sk16)
| sk18 = sk17
| sk18 = sk16
| sk16 = sk17 ) ).
cnf(corolary_3_9_87,negated_conjecture,
( sk16 != sk17
| between_c(sk15,sk18,sk16,sk17)
| between_c(sk15,sk17,sk18,sk16)
| sk18 = sk17
| sk18 = sk16
| sk16 = sk17 ) ).
cnf(corolary_3_9_88,negated_conjecture,
( ~ between_c(sk15,sk18,sk16,sk17)
| between_c(sk15,sk16,sk17,sk18) ) ).
cnf(corolary_3_9_89,negated_conjecture,
( ~ between_c(sk15,sk17,sk18,sk16)
| between_c(sk15,sk16,sk17,sk18) ) ).
cnf(corolary_3_9_90,negated_conjecture,
( sk18 != sk17
| between_c(sk15,sk16,sk17,sk18) ) ).
cnf(corolary_3_9_91,negated_conjecture,
( sk18 != sk16
| between_c(sk15,sk16,sk17,sk18) ) ).
cnf(corolary_3_9_92,negated_conjecture,
( sk16 != sk17
| between_c(sk15,sk16,sk17,sk18) ) ).
%--------------------------------------------------------------------------