TPTP Problem File: GEO108-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO108-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Equivalence of betweenness definitions 1 and 3
% Version : [EHK99] axioms.
% English :
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v2.4.0
% Syntax : Number of clauses : 75 ( 1 unt; 25 nHn; 70 RR)
% Number of literals : 225 ( 37 equ; 122 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-4 aty)
% Number of functors : 23 ( 23 usr; 4 con; 0-4 aty)
% Number of variables : 223 ( 24 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO108+1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%----Include axioms of betweenness for simple curves
include('Axioms/GEO004-1.ax').
%--------------------------------------------------------------------------
cnf(between_c2_defn_85,hypothesis,
( ~ between_c2(A,B,C,D)
| B != C ) ).
cnf(between_c2_defn_86,hypothesis,
( ~ between_c2(A,B,C,D)
| B != D ) ).
cnf(between_c2_defn_87,hypothesis,
( ~ between_c2(A,B,C,D)
| C != D ) ).
cnf(between_c2_defn_88,hypothesis,
( ~ between_c2(A,B,C,D)
| meet(C,sk15(D,C,B,A),sk16(D,C,B,A)) ) ).
cnf(between_c2_defn_89,hypothesis,
( ~ between_c2(A,B,C,D)
| part_of(sk15(D,C,B,A),A) ) ).
cnf(between_c2_defn_90,hypothesis,
( ~ between_c2(A,B,C,D)
| part_of(sk16(D,C,B,A),A) ) ).
cnf(between_c2_defn_91,hypothesis,
( ~ between_c2(A,B,C,D)
| end_point(B,sk15(D,C,B,A)) ) ).
cnf(between_c2_defn_92,hypothesis,
( ~ between_c2(A,B,C,D)
| end_point(D,sk16(D,C,B,A)) ) ).
cnf(between_c2_defn_93,hypothesis,
( A = B
| A = C
| B = C
| ~ meet(B,D,E)
| ~ part_of(D,F)
| ~ part_of(E,F)
| ~ end_point(A,D)
| ~ end_point(C,E)
| between_c2(F,A,B,C) ) ).
cnf(between_c3_defn_94,hypothesis,
( ~ between_c3(A,B,C,D)
| B != C ) ).
cnf(between_c3_defn_95,hypothesis,
( ~ between_c3(A,B,C,D)
| B != D ) ).
cnf(between_c3_defn_96,hypothesis,
( ~ between_c3(A,B,C,D)
| C != D ) ).
cnf(between_c3_defn_97,hypothesis,
( ~ between_c3(A,B,C,D)
| meet(C,sk17(D,C,B,A),sk18(D,C,B,A)) ) ).
cnf(between_c3_defn_98,hypothesis,
( ~ between_c3(A,B,C,D)
| sum(sk17(D,C,B,A),sk18(D,C,B,A)) = A ) ).
cnf(between_c3_defn_99,hypothesis,
( ~ between_c3(A,B,C,D)
| incident_c(B,sk17(D,C,B,A)) ) ).
cnf(between_c3_defn_100,hypothesis,
( ~ between_c3(A,B,C,D)
| incident_c(D,sk18(D,C,B,A)) ) ).
cnf(between_c3_defn_101,hypothesis,
( A = B
| A = C
| B = C
| ~ meet(B,D,E)
| sum(D,E) != F
| ~ incident_c(A,D)
| ~ incident_c(C,E)
| between_c3(F,A,B,C) ) ).
cnf(theorem_3_5_102,negated_conjecture,
( between_c2(sk19,sk20,sk21,sk22)
| between_c3(sk19,sk20,sk21,sk22) ) ).
cnf(theorem_3_5_103,negated_conjecture,
( between_c2(sk19,sk20,sk21,sk22)
| ~ between_c2(sk19,sk20,sk21,sk22) ) ).
cnf(theorem_3_5_104,negated_conjecture,
( ~ between_c3(sk19,sk20,sk21,sk22)
| between_c3(sk19,sk20,sk21,sk22) ) ).
cnf(theorem_3_5_105,negated_conjecture,
( ~ between_c3(sk19,sk20,sk21,sk22)
| ~ between_c2(sk19,sk20,sk21,sk22) ) ).
%--------------------------------------------------------------------------