TPTP Problem File: GEO107+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO107+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Equivalence of betweenness definitions 1 and 2
% Version : [EHK99] axioms.
% English :
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [KE99]
% Names : Theorem 3.3 [KE99]
% Status : Unknown
% Rating : 1.00 v2.4.0
% Syntax : Number of formulae : 19 ( 1 unt; 0 def)
% Number of atoms : 84 ( 14 equ)
% Maximal formula atoms : 12 ( 4 avg)
% Number of connectives : 73 ( 8 ~; 9 |; 32 &)
% ( 12 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 8 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-4 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 68 ( 56 !; 12 ?)
% SPC : FOF_UNK_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004+0.ax').
%----Include axioms of betweenness for simple curves
include('Axioms/GEO004+1.ax').
%--------------------------------------------------------------------------
fof(between_c2_defn,hypothesis,
! [C,P,Q,R] :
( between_c2(C,P,Q,R)
<=> ( P != Q
& P != R
& Q != R
& ? [C1,C2] :
( meet(Q,C1,C2)
& part_of(C1,C)
& part_of(C2,C)
& end_point(P,C1)
& end_point(R,C2) ) ) ) ).
fof(theorem_3_3,conjecture,
! [C,P,Q,R] :
( between_c(C,P,Q,R)
<=> between_c2(C,P,Q,R) ) ).
%--------------------------------------------------------------------------