TPTP Problem File: GEO101-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO101-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Intensification of GEO100+1
% Version : [EHK99] axioms.
% English :
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v2.4.0
% Syntax : Number of clauses : 54 ( 6 unt; 22 nHn; 49 RR)
% Number of literals : 166 ( 26 equ; 83 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 17 ( 17 usr; 3 con; 0-3 aty)
% Number of variables : 129 ( 10 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO101+1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%--------------------------------------------------------------------------
cnf(corollary_2_19_67,negated_conjecture,
part_of(sk15,sk14) ).
cnf(corollary_2_19_68,negated_conjecture,
sk15 != sk14 ).
cnf(corollary_2_19_69,negated_conjecture,
open(sk14) ).
cnf(corollary_2_19_70,negated_conjecture,
end_point(sk16,sk15) ).
cnf(corollary_2_19_71,negated_conjecture,
end_point(sk16,sk14) ).
cnf(corollary_2_19_72,negated_conjecture,
( ~ meet(A,sk15,B)
| sk14 != sum(sk15,B)
| sk16 = A
| A = C
| sk16 = C
| ~ end_point(C,B)
| ~ end_point(C,sk14) ) ).
%--------------------------------------------------------------------------