TPTP Problem File: GEO099-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO099-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Open subcurves can be complemented to form the sum
% Version : [EHK99] axioms.
% English : Every open sub-curve of a closed curve can be complemented by
% another curve so that their sum constitute the closed curve.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v2.4.0
% Syntax : Number of clauses : 54 ( 6 unt; 21 nHn; 49 RR)
% Number of literals : 162 ( 23 equ; 82 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 18 ( 18 usr; 4 con; 0-3 aty)
% Number of variables : 127 ( 10 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO099+1.p
% : Infinox says this has no finite (counter-) models.
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%--------------------------------------------------------------------------
cnf(theorem_2_17_67,negated_conjecture,
closed(sk14) ).
cnf(theorem_2_17_68,negated_conjecture,
part_of(sk15,sk14) ).
cnf(theorem_2_17_69,negated_conjecture,
end_point(sk16,sk15) ).
cnf(theorem_2_17_70,negated_conjecture,
end_point(sk17,sk15) ).
cnf(theorem_2_17_71,negated_conjecture,
sk16 != sk17 ).
cnf(theorem_2_17_72,negated_conjecture,
( ~ meet(sk16,sk15,A)
| ~ meet(sk17,sk15,A)
| sk14 != sum(sk15,A) ) ).
%--------------------------------------------------------------------------