TPTP Problem File: GEO099+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO099+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Open subcurves can be complemented to form the sum
% Version : [EHK99] axioms.
% English : Every open sub-curve of a closed curve can be complemented by
% another curve so that their sum constitute the closed curve.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [KE99]
% Names : Theorem 2.17 [KE99]
% Status : Unknown
% Rating : 1.00 v2.4.0
% Syntax : Number of formulae : 17 ( 1 unt; 0 def)
% Number of atoms : 75 ( 12 equ)
% Maximal formula atoms : 12 ( 4 avg)
% Number of connectives : 63 ( 5 ~; 9 |; 27 &)
% ( 9 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 58 ( 48 !; 10 ?)
% SPC : FOF_UNK_RFO_SEQ
% Comments : Infinox says this has no finite (counter-) models.
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004+0.ax').
%--------------------------------------------------------------------------
fof(theorem_2_17,conjecture,
! [C,C1,P,Q] :
( ( closed(C)
& part_of(C1,C)
& end_point(P,C1)
& end_point(Q,C1)
& P != Q )
=> ? [C2] :
( meet(P,C1,C2)
& meet(Q,C1,C2)
& C = sum(C1,C2) ) ) ).
%--------------------------------------------------------------------------