TPTP Problem File: GEO098-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO098-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : For closed curves, there are two complementary sub-curves
% Version : [EHK99] axioms.
% English :
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v2.4.0
% Syntax : Number of clauses : 53 ( 5 unt; 21 nHn; 48 RR)
% Number of literals : 161 ( 23 equ; 82 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 17 ( 17 usr; 3 con; 0-3 aty)
% Number of variables : 128 ( 10 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO098+1.p
% : Infinox says this has no finite (counter-) models.
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%--------------------------------------------------------------------------
cnf(theorem_2_16_67,negated_conjecture,
closed(sk14) ).
cnf(theorem_2_16_68,negated_conjecture,
incident_c(sk15,sk14) ).
cnf(theorem_2_16_69,negated_conjecture,
incident_c(sk16,sk14) ).
cnf(theorem_2_16_70,negated_conjecture,
sk15 != sk16 ).
cnf(theorem_2_16_71,negated_conjecture,
( ~ meet(sk15,A,B)
| ~ meet(sk16,A,B)
| sk14 != sum(A,B) ) ).
%--------------------------------------------------------------------------