TPTP Problem File: GEO097-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO097-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : A subcurves connects any two points on a curve
% Version : [EHK99] axioms.
% English : For any two points on a curve there is a sub-curve that connects
% these two points, that is to say these points are the endpoints
% of the sub-curve.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v2.4.0
% Syntax : Number of clauses : 52 ( 4 unt; 21 nHn; 47 RR)
% Number of literals : 160 ( 22 equ; 82 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 17 ( 17 usr; 3 con; 0-3 aty)
% Number of variables : 127 ( 10 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO097+1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%--------------------------------------------------------------------------
cnf(theorem_2_15_67,negated_conjecture,
sk14 != sk15 ).
cnf(theorem_2_15_68,negated_conjecture,
incident_c(sk14,sk16) ).
cnf(theorem_2_15_69,negated_conjecture,
incident_c(sk15,sk16) ).
cnf(theorem_2_15_70,negated_conjecture,
( ~ part_of(A,sk16)
| ~ end_point(sk14,A)
| ~ end_point(sk15,A) ) ).
%--------------------------------------------------------------------------