TPTP Problem File: GEO097+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO097+1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : A subcurves connects any two points on a curve
% Version : [EHK99] axioms.
% English : For any two points on a curve there is a sub-curve that connects
% these two points, that is to say these points are the endpoints
% of the sub-curve.
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [KE99]
% Names : Theorem 2.15 [KE99]
% : T1 [EHK99]
% Status : Theorem
% Rating : 1.00 v2.4.0
% Syntax : Number of formulae : 17 ( 1 unt; 0 def)
% Number of atoms : 73 ( 11 equ)
% Maximal formula atoms : 12 ( 4 avg)
% Number of connectives : 61 ( 5 ~; 9 |; 25 &)
% ( 9 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 57 ( 47 !; 10 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004+0.ax').
%--------------------------------------------------------------------------
fof(theorem_2_15,conjecture,
! [P,Q,C] :
( ( P != Q
& incident_c(P,C)
& incident_c(Q,C) )
=> ? [Cpp] :
( part_of(Cpp,C)
& end_point(P,Cpp)
& end_point(Q,Cpp) ) ) ).
%--------------------------------------------------------------------------