TPTP Problem File: GEO091-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO091-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Two points determine subcurve
% Version : [EHK99] axioms.
% English : Two distinct points on an open curve uniquely determine the
% sub-curve connecting these points
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v4.1.0, 0.92 v4.0.1, 1.00 v2.4.0
% Syntax : Number of clauses : 57 ( 10 unt; 21 nHn; 52 RR)
% Number of literals : 163 ( 23 equ; 80 neg)
% Maximal clause size : 12 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 19 ( 19 usr; 5 con; 0-3 aty)
% Number of variables : 126 ( 10 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO091+1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%--------------------------------------------------------------------------
cnf(theorem_2_13_67,negated_conjecture,
part_of(sk15,sk14) ).
cnf(theorem_2_13_68,negated_conjecture,
part_of(sk16,sk14) ).
cnf(theorem_2_13_69,negated_conjecture,
open(sk14) ).
cnf(theorem_2_13_70,negated_conjecture,
sk17 != sk18 ).
cnf(theorem_2_13_71,negated_conjecture,
end_point(sk17,sk15) ).
cnf(theorem_2_13_72,negated_conjecture,
end_point(sk17,sk16) ).
cnf(theorem_2_13_73,negated_conjecture,
end_point(sk18,sk15) ).
cnf(theorem_2_13_74,negated_conjecture,
end_point(sk18,sk16) ).
cnf(theorem_2_13_75,negated_conjecture,
sk15 != sk16 ).
%--------------------------------------------------------------------------