TPTP Problem File: GEO085-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO085-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Geometry (Oriented curves)
% Problem : Every open curve has at least two endpoints
% Version : [EHK99] axioms.
% English :
% Refs : [KE99] Kulik & Eschenbach (1999), A Geometry of Oriented Curv
% : [EHK99] Eschenbach et al. (1999), Representing Simple Trajecto
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v5.5.0, 0.15 v5.4.0, 0.20 v5.3.0, 0.17 v5.2.0, 0.06 v5.1.0, 0.12 v5.0.0, 0.07 v4.1.0, 0.15 v4.0.1, 0.27 v3.7.0, 0.00 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.08 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.4.0
% Syntax : Number of clauses : 50 ( 2 unt; 21 nHn; 45 RR)
% Number of literals : 158 ( 22 equ; 80 neg)
% Maximal clause size : 12 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 15 ( 15 usr; 1 con; 0-3 aty)
% Number of variables : 128 ( 10 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Created by tptp2X -f tptp -t clausify:otter GEO085+1.p
%--------------------------------------------------------------------------
%----Include simple curve axioms
include('Axioms/GEO004-0.ax').
%--------------------------------------------------------------------------
cnf(theorem_2_7_1_67,negated_conjecture,
open(sk14) ).
cnf(theorem_2_7_1_68,negated_conjecture,
( A = B
| ~ end_point(A,sk14)
| ~ end_point(B,sk14) ) ).
%--------------------------------------------------------------------------