TPTP Problem File: GEO079-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO079-1 : TPTP v9.0.0. Released v1.1.0.
% Domain : Geometry
% Problem : The alternate interior angles in a trapezoid are equal
% Version : [Cha70] axioms : Incomplete.
% English : The alternate interior angles formed by a diagonal of a (not
% necessarily isosceles) trapezoid are equal.
% Refs : [Sla67] Slagle (1967), Automatic Theorem Proving with Renamabl
% Source : [Sla67]
% Names : GEOMETRY THEOREM [Sla67]
% Status : Unsatisfiable
% Rating : 0.00 v2.0.0
% Syntax : Number of clauses : 6 ( 2 unt; 0 nHn; 6 RR)
% Number of literals : 11 ( 0 equ; 6 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 3-6 aty)
% Number of functors : 4 ( 4 usr; 4 con; 0-0 aty)
% Number of variables : 20 ( 0 sgn)
% SPC : CNF_UNS_EPR_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(right_angles_are_equal,axiom,
( ~ right_angle(U,V,W)
| ~ right_angle(X,Y,Z)
| eq(U,V,W,X,Y,Z) ) ).
cnf(corresponding_angles_are_equal,axiom,
( ~ congruent(U,V,W,X,Y,Z)
| eq(U,V,W,X,Y,Z) ) ).
cnf(trapezoid_definition,axiom,
( ~ trapezoid(U,V,W,X)
| parallel(V,W,U,X) ) ).
cnf(interior_angles_are_equal,axiom,
( ~ parallel(U,V,X,Y)
| eq(X,V,U,V,X,Y) ) ).
cnf(a_trapezoid,hypothesis,
trapezoid(a,b,c,d) ).
cnf(prove_angles_equal,negated_conjecture,
~ eq(a,c,b,c,a,d) ).
%--------------------------------------------------------------------------