TPTP Problem File: GEO078-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO078-6 : TPTP v9.0.0. Released v2.7.0.
% Domain : Geometry (Hilbert)
% Problem : Every plane contains 3 noncollinear points
% Version : [Cla03] axioms.
% English :
% Refs : [Ben92] Benanav (1992), Recognising Unnecessary Clauses in Res
% : [Cla03] Claessen (2003), Email to G. Sutcliffe
% Source : [Cla03]
% Names :
% Status : Satisfiable
% Rating : 0.56 v9.0.0, 0.50 v8.2.0, 0.70 v8.1.0, 0.62 v7.5.0, 0.67 v7.4.0, 0.64 v7.3.0, 0.67 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.29 v6.3.0, 0.38 v6.2.0, 0.50 v6.1.0, 0.44 v6.0.0, 0.43 v5.5.0, 0.62 v5.4.0, 0.80 v5.3.0, 0.78 v5.2.0, 0.80 v5.0.0, 0.78 v4.1.0, 0.71 v4.0.1, 1.00 v4.0.0, 0.50 v3.7.0, 0.33 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.80 v3.1.0, 0.67 v2.7.0
% Syntax : Number of clauses : 33 ( 2 unt; 19 nHn; 33 RR)
% Number of literals : 185 ( 46 equ; 109 neg)
% Maximal clause size : 16 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-3 aty)
% Number of functors : 11 ( 11 usr; 2 con; 0-3 aty)
% Number of variables : 73 ( 0 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include axioms for Hilbert geometry
include('Axioms/GEO005-0.ax').
%--------------------------------------------------------------------------
cnf(there_is_a_plane,hypothesis,
plane(a_plane) ).
cnf(prove_every_plane_contains_3_noncollinear_points,negated_conjecture,
( collinear(X1,X2,X3)
| ~ point(X1)
| ~ point(X2)
| ~ point(X3)
| X1 = X2
| X1 = X3
| X2 = X3
| ~ point_on_plane(X1,a_plane)
| ~ point_on_plane(X2,a_plane)
| ~ point_on_plane(X3,a_plane) ) ).
%--------------------------------------------------------------------------