TPTP Problem File: GEO075-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO075-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : Show reflexivity for equidistance is dependent
% Version : [Qua89] axioms.
% English : All of the axioms in GEO003.ax are known to be independent
% except A1 and A7. Tarski and his students have been unable
% to establish their status.
% Refs : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [Qua89]
% Names : Q3.1 [Qua89]
% Status : Open
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 18 ( 6 unt; 5 nHn; 16 RR)
% Number of literals : 56 ( 7 equ; 35 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 10 ( 10 usr; 5 con; 0-6 aty)
% Number of variables : 69 ( 3 sgn)
% SPC : CNF_OPN_RFO_SEQ_NHN
% Comments : Infinox says this has no finite (counter-) models.
%--------------------------------------------------------------------------
%----Don't Include Tarski geometry axioms - proving one is dependent
% include('Axioms/GEO002-0.ax').
%--------------------------------------------------------------------------
%----A1 - Reflexivity axiom for equidistance.
%----This is the one being proved
%input_clause(reflexivity_for_equidistance,axiom,
% [++equidistant(X,Y,Y,X)]).
%----A2 - Transitivity axiom for equidistance
cnf(transitivity_for_equidistance,axiom,
( ~ equidistant(X,Y,Z,V)
| ~ equidistant(X,Y,V2,W)
| equidistant(Z,V,V2,W) ) ).
%----A3 Indentity axiom for equidistance
cnf(identity_for_equidistance,axiom,
( ~ equidistant(X,Y,Z,Z)
| X = Y ) ).
%----A4 - Segment construction axiom, two clauses.
%----A4.1
cnf(segment_construction1,axiom,
between(X,Y,extension(X,Y,W,V)) ).
%----A4.2
cnf(segment_construction2,axiom,
equidistant(Y,extension(X,Y,W,V),W,V) ).
%----A5 - Outer five-segment axiom
cnf(outer_five_segment,axiom,
( ~ equidistant(X,Y,X1,Y1)
| ~ equidistant(Y,Z,Y1,Z1)
| ~ equidistant(X,V,X1,V1)
| ~ equidistant(Y,V,Y1,V1)
| ~ between(X,Y,Z)
| ~ between(X1,Y1,Z1)
| X = Y
| equidistant(Z,V,Z1,V1) ) ).
%----A6 - Identity axiom for betweenness
cnf(identity_for_betweeness,axiom,
( ~ between(X,Y,X)
| X = Y ) ).
%----A7 - Inner Pasch axiom, two clauses.
%----A7.1
cnf(inner_pasch1,axiom,
( ~ between(U,V,W)
| ~ between(Y,X,W)
| between(V,inner_pasch(U,V,W,X,Y),Y) ) ).
%----A7.2
cnf(inner_pasch2,axiom,
( ~ between(U,V,W)
| ~ between(Y,X,W)
| between(X,inner_pasch(U,V,W,X,Y),U) ) ).
%----A8 - Lower dimension axiom, three clauses.
%----A8.1
cnf(lower_dimension1,axiom,
~ between(lower_dimension_point_1,lower_dimension_point_2,lower_dimension_point_3) ).
%----A8.2
cnf(lower_dimension2,axiom,
~ between(lower_dimension_point_2,lower_dimension_point_3,lower_dimension_point_1) ).
%----A8.3
cnf(lower_dimension3,axiom,
~ between(lower_dimension_point_3,lower_dimension_point_1,lower_dimension_point_2) ).
%----A9 - Upper dimension axiom
cnf(upper_dimension,axiom,
( ~ equidistant(X,W,X,V)
| ~ equidistant(Y,W,Y,V)
| ~ equidistant(Z,W,Z,V)
| between(X,Y,Z)
| between(Y,Z,X)
| between(Z,X,Y)
| W = V ) ).
%----A10 - Euclid's axiom, three clauses.
%----A10.1
cnf(euclid1,axiom,
( ~ between(U,W,Y)
| ~ between(V,W,X)
| U = W
| between(U,V,euclid1(U,V,W,X,Y)) ) ).
%----A10.2
cnf(euclid2,axiom,
( ~ between(U,W,Y)
| ~ between(V,W,X)
| U = W
| between(U,X,euclid2(U,V,W,X,Y)) ) ).
%----A10.3
cnf(euclid3,axiom,
( ~ between(U,W,Y)
| ~ between(V,W,X)
| U = W
| between(euclid1(U,V,W,X,Y),Y,euclid2(U,V,W,X,Y)) ) ).
%----A11 - Weakened continuity axiom, two clauses.
%----A11.1
cnf(continuity1,axiom,
( ~ equidistant(U,V,U,V1)
| ~ equidistant(U,X,U,X1)
| ~ between(U,V,X)
| ~ between(V,W,X)
| between(V1,continuous(U,V,V1,W,X,X1),X1) ) ).
%----A11.2
cnf(continuity2,axiom,
( ~ equidistant(U,V,U,V1)
| ~ equidistant(U,X,U,X1)
| ~ between(U,V,X)
| ~ between(V,W,X)
| equidistant(U,W,U,continuous(U,V,V1,W,X,X1)) ) ).
cnf(prove_reflexivity,negated_conjecture,
~ equidistant(u,v,v,u) ).
%--------------------------------------------------------------------------