TPTP Problem File: GEO073-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO073-1 : TPTP v9.0.0. Bugfixed v2.5.0.
% Domain : Geometry
% Problem : The diagonals of a non-degenerate rectancle bisect
% Version : [MOW76] axioms.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% Source : [Wos88]
% Names : Test Problem 11 [Wos88]
% : Bisecting Diagonal Theorem [Wos88]
% Status : Unsatisfiable
% Rating : 1.00 v2.5.0
% Syntax : Number of clauses : 28 ( 13 unt; 6 nHn; 25 RR)
% Number of literals : 73 ( 10 equ; 42 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 13 ( 13 usr; 8 con; 0-6 aty)
% Number of variables : 79 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : In [Wos88] only one half of the symmetry is proved. Here
% both are proved, thus makiung this slightly stronger than the
% [Wos, 988] version.
% Bugfixes : v1.0.1 - Bug in GEO001-0.eq fixed.
% : v2.5.0 - Bug in GEO001-0.ax fixed.
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO001-0.ax').
%--------------------------------------------------------------------------
cnf(u_to_v_equals_w_to_x,hypothesis,
equidistant(u,v,w,x) ).
cnf(v_to_w_equals_x_to_u,hypothesis,
equidistant(v,w,x,u) ).
cnf(u_to_w_equals_v_to_x,hypothesis,
equidistant(u,w,v,x) ).
cnf(y_between_u_and_w,hypothesis,
between(u,y,w) ).
cnf(y_between_v_and_x,hypothesis,
between(v,y,x) ).
cnf(u_not_v,hypothesis,
u != v ).
cnf(x_not_u,hypothesis,
x != u ).
%----This proves both ways
cnf(prove_bisection,negated_conjecture,
( ~ equidistant(u,y,w,y)
| ~ equidistant(v,y,x,y) ) ).
%--------------------------------------------------------------------------