TPTP Problem File: GEO063-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO063-3 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Geometry
% Problem : Insertion respects congruence in its last two arguments
% Version : [Qua89] axioms : Augmented.
% English :
% Refs : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [Qua89]
% Names : I4 [Qua89]
% Status : Unsatisfiable
% Rating : 0.15 v9.0.0, 0.20 v8.2.0, 0.19 v8.1.0, 0.16 v7.5.0, 0.26 v7.4.0, 0.18 v7.3.0, 0.25 v7.1.0, 0.17 v7.0.0, 0.40 v6.3.0, 0.27 v6.2.0, 0.50 v5.5.0, 0.80 v5.3.0, 0.83 v5.2.0, 0.75 v5.1.0, 0.71 v5.0.0, 0.64 v4.1.0, 0.62 v4.0.1, 0.55 v4.0.0, 0.45 v3.7.0, 0.30 v3.5.0, 0.36 v3.4.0, 0.42 v3.3.0, 0.43 v3.2.0, 0.46 v3.1.0, 0.45 v2.7.0, 0.50 v2.6.0, 0.44 v2.5.0, 0.73 v2.4.0, 0.38 v2.3.0, 0.50 v2.2.1, 0.71 v2.2.0, 0.60 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 76 ( 27 unt; 15 nHn; 55 RR)
% Number of literals : 198 ( 43 equ; 113 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 16 ( 16 usr; 9 con; 0-6 aty)
% Number of variables : 265 ( 14 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
% Bugfixes : v1.2.1 - Clause d12 fixed.
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%----Include definition of reflection
include('Axioms/GEO002-2.ax').
%----Include definition of insertion
include('Axioms/GEO002-3.ax').
%--------------------------------------------------------------------------
cnf(d1,axiom,
equidistant(U,V,U,V) ).
cnf(d2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,U,V) ) ).
cnf(d3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,W,X) ) ).
cnf(d4_1,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(U,V,X,W) ) ).
cnf(d4_2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,X,W) ) ).
cnf(d4_3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,V,U) ) ).
cnf(d4_4,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,U,V) ) ).
cnf(d4_5,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,V,U) ) ).
cnf(d5,axiom,
( ~ equidistant(U,V,W,X)
| ~ equidistant(W,X,Y,Z)
| equidistant(U,V,Y,Z) ) ).
cnf(e1,axiom,
V = extension(U,V,W,W) ).
cnf(b0,axiom,
( Y != extension(U,V,W,X)
| between(U,V,Y) ) ).
cnf(r2_1,axiom,
between(U,V,reflection(U,V)) ).
cnf(r2_2,axiom,
equidistant(V,reflection(U,V),U,V) ).
cnf(r3_1,axiom,
( U != V
| V = reflection(U,V) ) ).
cnf(r3_2,axiom,
U = reflection(U,U) ).
cnf(r4,axiom,
( V != reflection(U,V)
| U = V ) ).
cnf(d7,axiom,
equidistant(U,U,V,V) ).
cnf(d8,axiom,
( ~ equidistant(U,V,U1,V1)
| ~ equidistant(V,W,V1,W1)
| ~ between(U,V,W)
| ~ between(U1,V1,W1)
| equidistant(U,W,U1,W1) ) ).
cnf(d9,axiom,
( ~ between(U,V,W)
| ~ between(U,V,X)
| ~ equidistant(V,W,V,X)
| U = V
| W = X ) ).
cnf(d10_1,axiom,
( ~ between(U,V,W)
| U = V
| W = extension(U,V,V,W) ) ).
cnf(d10_2,axiom,
( ~ equidistant(W,X,Y,Z)
| extension(U,V,W,X) = extension(U,V,Y,Z)
| U = V ) ).
cnf(d10_3,axiom,
( extension(U,V,U,V) = extension(U,V,V,U)
| U = V ) ).
cnf(r5,axiom,
equidistant(V,U,V,reflection(reflection(U,V),V)) ).
cnf(r6,axiom,
U = reflection(reflection(U,V),V) ).
cnf(t3,axiom,
between(U,V,V) ).
cnf(b1,axiom,
( ~ between(U,W,X)
| U != X
| between(V,W,X) ) ).
cnf(t1,axiom,
( ~ between(U,V,W)
| between(W,V,U) ) ).
cnf(t2,axiom,
between(U,U,V) ).
cnf(b2,axiom,
( ~ between(U,V,W)
| ~ between(V,U,W)
| U = V ) ).
cnf(b3,axiom,
( ~ between(U,V,W)
| ~ between(U,W,V)
| V = W ) ).
cnf(t6_1,axiom,
( ~ between(U,V,W)
| ~ between(V,U,W)
| U = V
| V = W ) ).
cnf(t6_2,axiom,
( ~ between(U,V,W)
| ~ between(U,W,V)
| U = V
| V = W ) ).
cnf(b4,axiom,
( ~ between(U,V,W)
| ~ between(V,W,X)
| between(U,V,W) ) ).
cnf(b5,axiom,
( ~ between(U,V,W)
| ~ between(U,W,X)
| between(V,W,X) ) ).
cnf(b6,axiom,
( ~ between(U,V,W)
| ~ between(V,W,X)
| between(U,W,X)
| V = W ) ).
cnf(b7,axiom,
( ~ between(U,V,W)
| ~ between(V,W,X)
| between(U,V,X)
| V = W ) ).
cnf(b8,axiom,
( ~ between(U,V,X)
| ~ between(V,W,X)
| between(U,W,X) ) ).
cnf(b9,axiom,
( ~ between(U,V,W)
| ~ between(U,W,X)
| between(U,V,X) ) ).
cnf(e2_1,axiom,
lower_dimension_point_1 != lower_dimension_point_2 ).
cnf(e2_2,axiom,
lower_dimension_point_2 != lower_dimension_point_3 ).
cnf(e2_3,axiom,
lower_dimension_point_1 != lower_dimension_point_3 ).
cnf(e3_1,axiom,
V != extension(U,V,lower_dimension_point_1,lower_dimension_point_2) ).
cnf(e3_2,axiom,
equidistant(V,extension(U,V,lower_dimension_point_1,lower_dimension_point_2),X,extension(W,X,lower_dimension_point_1,lower_dimension_point_2)) ).
cnf(e3_3,axiom,
between(U,V,extension(U,V,lower_dimension_point_1,lower_dimension_point_2)) ).
cnf(b10,axiom,
( ~ between(U,V,W)
| ~ between(U1,V1,W)
| ~ between(U,X,U1)
| between(X,inner_pasch(V1,inner_pasch(U,X,U1,V1,W),U,V,W),W)
| between(V,inner_pasch(V1,inner_pasch(U,X,U1,V1,W),U,V,W),V1) ) ).
cnf(d11,axiom,
( ~ between(U,V,W)
| ~ equidistant(U,W,U,W1)
| ~ equidistant(V,W,V,W1)
| U = V
| W = W1 ) ).
cnf(d12,axiom,
( ~ equidistant(U,V,U1,V1)
| ~ equidistant(U,W,U1,W1)
| ~ equidistant(U,X,U1,X1)
| ~ equidistant(W,X,W1,X1)
| ~ between(U,V,W)
| ~ between(U1,V1,W1)
| equidistant(V,X,V1,X1) ) ).
cnf(d13,axiom,
( ~ between(U,V,W)
| ~ between(U1,V1,W1)
| ~ equidistant(U,V,U1,V1)
| ~ equidistant(U,W,U1,W1)
| equidistant(V,W,V1,W1) ) ).
cnf(d14,axiom,
( ~ equidistant(U,V,U1,V1)
| ~ equidistant(V,W,V1,W1)
| ~ equidistant(U,X,U1,X1)
| ~ equidistant(W,X,W1,X1)
| ~ between(U,V,W)
| ~ between(U1,V1,W1)
| equidistant(V,X,V1,X1) ) ).
cnf(d15,axiom,
( ~ between(U,V,W)
| ~ equidistant(U,V,U,X)
| ~ equidistant(W,V,W,X)
| V = X ) ).
cnf(i2_1,axiom,
equidistant(U,V,U1,insertion(U1,W1,U,V)) ).
cnf(i2_2,axiom,
( ~ between(U,V,W)
| ~ equidistant(U,W,U1,W1)
| between(U1,insertion(U1,W1,U,V),W1) ) ).
cnf(i2_3,axiom,
( ~ between(U,V,W)
| ~ equidistant(U,W,U1,W1)
| equidistant(V,W,insertion(U1,W1,U,V),W1) ) ).
cnf(i3,axiom,
( ~ between(U,V,W)
| V = insertion(U,W,U,V) ) ).
cnf(w_to_x_equals_y_to_z,hypothesis,
equidistant(w,x,y,z) ).
cnf(prove_equality_of_insertions,negated_conjecture,
insertion(u,v,w,x) != insertion(u,v,y,z) ).
%--------------------------------------------------------------------------