TPTP Problem File: GEO039-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO039-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : Corollary the identity axiom for betweenness
% Version : [Qua89] axioms : Augmented.
% English :
% Refs : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [Qua89]
% Names : B1 [Qua89]
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.2.0, 0.05 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.15 v5.3.0, 0.11 v5.2.0, 0.06 v5.0.0, 0.00 v4.0.1, 0.09 v3.7.0, 0.00 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.08 v3.1.0, 0.09 v2.7.0, 0.17 v2.6.0, 0.10 v2.5.0, 0.08 v2.4.0, 0.11 v2.2.1, 0.00 v2.2.0, 0.11 v2.1.0, 0.11 v2.0.0
% Syntax : Number of clauses : 47 ( 19 unt; 9 nHn; 32 RR)
% Number of literals : 110 ( 25 equ; 56 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 13 ( 13 usr; 7 con; 0-6 aty)
% Number of variables : 155 ( 7 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%----Include definition of reflection
include('Axioms/GEO002-2.ax').
%--------------------------------------------------------------------------
cnf(d1,axiom,
equidistant(U,V,U,V) ).
cnf(d2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,U,V) ) ).
cnf(d3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,W,X) ) ).
cnf(d4_1,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(U,V,X,W) ) ).
cnf(d4_2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,X,W) ) ).
cnf(d4_3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,V,U) ) ).
cnf(d4_4,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,U,V) ) ).
cnf(d4_5,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,V,U) ) ).
cnf(d5,axiom,
( ~ equidistant(U,V,W,X)
| ~ equidistant(W,X,Y,Z)
| equidistant(U,V,Y,Z) ) ).
cnf(e1,axiom,
V = extension(U,V,W,W) ).
cnf(b0,axiom,
( Y != extension(U,V,W,X)
| between(U,V,Y) ) ).
cnf(r2_1,axiom,
between(U,V,reflection(U,V)) ).
cnf(r2_2,axiom,
equidistant(V,reflection(U,V),U,V) ).
cnf(r3_1,axiom,
( U != V
| V = reflection(U,V) ) ).
cnf(r3_2,axiom,
U = reflection(U,U) ).
cnf(r4,axiom,
( V != reflection(U,V)
| U = V ) ).
cnf(d7,axiom,
equidistant(U,U,V,V) ).
cnf(d8,axiom,
( ~ equidistant(U,V,U1,V1)
| ~ equidistant(V,W,V1,W1)
| ~ between(U,V,W)
| ~ between(U1,V1,W1)
| equidistant(U,W,U1,W1) ) ).
cnf(d9,axiom,
( ~ between(U,V,W)
| ~ between(U,V,X)
| ~ equidistant(V,W,V,X)
| U = V
| W = X ) ).
cnf(d10_1,axiom,
( ~ between(U,V,W)
| U = V
| W = extension(U,V,V,W) ) ).
cnf(d10_2,axiom,
( ~ equidistant(W,X,Y,Z)
| extension(U,V,W,X) = extension(U,V,Y,Z)
| U = V ) ).
cnf(d10_3,axiom,
( extension(U,V,U,V) = extension(U,V,V,U)
| U = V ) ).
cnf(r5,axiom,
equidistant(V,U,V,reflection(reflection(U,V),V)) ).
cnf(r6,axiom,
U = reflection(reflection(U,V),V) ).
cnf(t3,axiom,
between(U,V,V) ).
cnf(w_between_u_and_x,hypothesis,
between(u,w,x) ).
cnf(u_is_x,hypothesis,
u = x ).
cnf(prove_corollary,negated_conjecture,
~ between(v,w,x) ).
%--------------------------------------------------------------------------