TPTP Problem File: GEO038-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO038-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : Corollary 1 to the segment contruction axiom
% Version : [Qua89] axioms : Augmented.
% English :
% Refs : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [Qua89]
% Names : B0 [Qua89]
% Status : Unsatisfiable
% Rating : 0.10 v8.1.0, 0.05 v7.5.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.14 v6.0.0, 0.10 v5.3.0, 0.11 v5.2.0, 0.12 v5.1.0, 0.06 v5.0.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.08 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.5.0, 0.08 v2.4.0, 0.00 v2.0.0
% Syntax : Number of clauses : 30 ( 10 unt; 5 nHn; 25 RR)
% Number of literals : 77 ( 9 equ; 44 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 13 ( 13 usr; 8 con; 0-6 aty)
% Number of variables : 110 ( 4 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%--------------------------------------------------------------------------
cnf(d1,axiom,
equidistant(U,V,U,V) ).
cnf(d2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,U,V) ) ).
cnf(d3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,W,X) ) ).
cnf(d4_1,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(U,V,X,W) ) ).
cnf(d4_2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,X,W) ) ).
cnf(d4_3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,V,U) ) ).
cnf(d4_4,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,U,V) ) ).
cnf(d4_5,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,V,U) ) ).
cnf(d5,axiom,
( ~ equidistant(U,V,W,X)
| ~ equidistant(W,X,Y,Z)
| equidistant(U,V,Y,Z) ) ).
cnf(e1,axiom,
V = extension(U,V,W,W) ).
cnf(y_is_extension,hypothesis,
y = extension(u,v,w,x) ).
cnf(prove_corollary,negated_conjecture,
~ between(u,v,y) ).
%--------------------------------------------------------------------------