TPTP Problem File: GEO035-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO035-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : A null extension does not extend a line
% Version : [Qua89] axioms : Augmented.
% English :
% Refs : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [Qua89]
% Names : E1 [Qua89]
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.00 v8.2.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.00 v7.0.0, 0.13 v6.3.0, 0.09 v6.2.0, 0.20 v6.1.0, 0.14 v6.0.0, 0.20 v5.5.0, 0.15 v5.3.0, 0.17 v5.2.0, 0.19 v5.1.0, 0.12 v5.0.0, 0.00 v4.0.1, 0.09 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.00 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.0.0
% Syntax : Number of clauses : 28 ( 8 unt; 5 nHn; 24 RR)
% Number of literals : 75 ( 8 equ; 44 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 11 ( 11 usr; 6 con; 0-6 aty)
% Number of variables : 107 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%--------------------------------------------------------------------------
cnf(d1,axiom,
equidistant(U,V,U,V) ).
cnf(d2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,U,V) ) ).
cnf(d3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,W,X) ) ).
cnf(d4_1,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(U,V,X,W) ) ).
cnf(d4_2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,X,W) ) ).
cnf(d4_3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,V,U) ) ).
cnf(d4_4,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,U,V) ) ).
cnf(d4_5,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,V,U) ) ).
cnf(d5,axiom,
( ~ equidistant(U,V,W,X)
| ~ equidistant(W,X,Y,Z)
| equidistant(U,V,Y,Z) ) ).
cnf(prove_null_extension,negated_conjecture,
v != extension(u,v,w,w) ).
%--------------------------------------------------------------------------