TPTP Problem File: GEO029-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO029-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : Corollary 3 to unique extension
% Version : [Qua89] axioms : Augmented.
% English :
% Refs : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [Qua89]
% Names : D10.3 [Qua89]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.10 v8.1.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.00 v7.0.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.21 v6.0.0, 0.30 v5.5.0, 0.55 v5.3.0, 0.56 v5.2.0, 0.50 v5.1.0, 0.65 v5.0.0, 0.50 v4.1.0, 0.46 v4.0.1, 0.55 v4.0.0, 0.36 v3.7.0, 0.30 v3.5.0, 0.27 v3.4.0, 0.17 v3.3.0, 0.36 v3.2.0, 0.38 v3.1.0, 0.36 v2.7.0, 0.42 v2.6.0, 0.30 v2.5.0, 0.50 v2.4.0, 0.33 v2.3.0, 0.44 v2.2.1, 0.67 v2.2.0, 0.67 v2.1.0, 0.56 v2.0.0
% Syntax : Number of clauses : 40 ( 15 unt; 6 nHn; 30 RR)
% Number of literals : 98 ( 19 equ; 55 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 11 ( 11 usr; 5 con; 0-6 aty)
% Number of variables : 138 ( 6 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%----Include definition of reflection
include('Axioms/GEO002-2.ax').
%--------------------------------------------------------------------------
cnf(d1,axiom,
equidistant(U,V,U,V) ).
cnf(d2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,U,V) ) ).
cnf(d3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,W,X) ) ).
cnf(d4_1,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(U,V,X,W) ) ).
cnf(d4_2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,X,W) ) ).
cnf(d4_3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,V,U) ) ).
cnf(d4_4,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,U,V) ) ).
cnf(d4_5,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,V,U) ) ).
cnf(d5,axiom,
( ~ equidistant(U,V,W,X)
| ~ equidistant(W,X,Y,Z)
| equidistant(U,V,Y,Z) ) ).
cnf(e1,axiom,
V = extension(U,V,W,W) ).
cnf(b0,axiom,
( Y != extension(U,V,W,X)
| between(U,V,Y) ) ).
cnf(r2_1,axiom,
between(U,V,reflection(U,V)) ).
cnf(r2_2,axiom,
equidistant(V,reflection(U,V),U,V) ).
cnf(r3_1,axiom,
( U != V
| V = reflection(U,V) ) ).
cnf(r3_2,axiom,
U = reflection(U,U) ).
cnf(r4,axiom,
( V != reflection(U,V)
| U = V ) ).
cnf(d7,axiom,
equidistant(U,U,V,V) ).
cnf(d8,axiom,
( ~ equidistant(U,V,U1,V1)
| ~ equidistant(V,W,V1,W1)
| ~ between(U,V,W)
| ~ between(U1,V1,W1)
| equidistant(U,W,U1,W1) ) ).
cnf(d9,axiom,
( ~ between(U,V,W)
| ~ between(U,V,X)
| ~ equidistant(V,W,V,X)
| U = V
| W = X ) ).
cnf(u_not_v,hypothesis,
u != v ).
cnf(prove_equal_extensions,negated_conjecture,
extension(u,v,u,v) != extension(u,v,v,u) ).
%--------------------------------------------------------------------------