TPTP Problem File: GEO022-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO022-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : Ordinary transitivity of equidistance
% Version : [Qua89] axioms.
% English : This form of transitivity is different from that expressed
% in the axioms.
% Refs : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.10 v8.1.0, 0.11 v7.4.0, 0.12 v7.3.0, 0.08 v7.0.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.07 v6.0.0, 0.10 v5.3.0, 0.11 v5.2.0, 0.12 v5.0.0, 0.07 v4.1.0, 0.08 v4.0.1, 0.09 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0, 0.08 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.0.0
% Syntax : Number of clauses : 21 ( 9 unt; 5 nHn; 18 RR)
% Number of literals : 59 ( 7 equ; 35 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 14 ( 14 usr; 9 con; 0-6 aty)
% Number of variables : 71 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : In [Quiafe, 1989] the next problem (D6) is omitted.
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%--------------------------------------------------------------------------
cnf(u_to_v_equals_w_to_x,hypothesis,
equidistant(u,v,w,x) ).
cnf(w_to_x_equals_y_to_z,hypothesis,
equidistant(w,x,y,z) ).
cnf(prove_transitivity,negated_conjecture,
~ equidistant(u,v,y,z) ).
%--------------------------------------------------------------------------