TPTP Problem File: GEO020-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO020-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : Corollary 4 to symmetries of equidistance
% Version : [Qua89] axioms : Augmented.
% English : Show that if the distance from A to B equals the distance
% from C to D, then the distance from D to C equals the
% distance from A to B.
% Refs : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [Qua89]
% Names : D4.4 [Qua89]
% Status : Unsatisfiable
% Rating : 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.07 v6.0.0, 0.10 v5.3.0, 0.11 v5.2.0, 0.12 v5.0.0, 0.07 v4.1.0, 0.08 v4.0.1, 0.09 v3.7.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.00 v3.1.0, 0.09 v2.7.0, 0.08 v2.6.0, 0.00 v2.0.0
% Syntax : Number of clauses : 23 ( 9 unt; 5 nHn; 19 RR)
% Number of literals : 63 ( 7 equ; 37 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 12 ( 12 usr; 7 con; 0-6 aty)
% Number of variables : 81 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%--------------------------------------------------------------------------
cnf(d1,axiom,
equidistant(U,V,U,V) ).
cnf(d2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,U,V) ) ).
cnf(d3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,W,X) ) ).
cnf(u_to_v_equals_w_to_x,hypothesis,
equidistant(u,v,w,x) ).
cnf(prove_symmetry,negated_conjecture,
~ equidistant(x,w,u,v) ).
%--------------------------------------------------------------------------