TPTP Problem File: GEO013-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO013-1 : TPTP v9.0.0. Bugfixed v2.5.0.
% Domain : Geometry
% Problem : Collinearity for 5 points
% Version : [MOW76] axioms.
% English : If z1, z2, and z3 are each collinear with distinct points
% x and y, then z1, z2, and z3 are collinear.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% Source : [ANL]
% Names : T13 [MOW76]
% : t13.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 1.00 v2.5.0
% Syntax : Number of clauses : 29 ( 11 unt; 7 nHn; 26 RR)
% Number of literals : 79 ( 9 equ; 44 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-4 aty)
% Number of functors : 13 ( 13 usr; 8 con; 0-6 aty)
% Number of variables : 91 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
% Bugfixes : v1.0.1 - Bug in GEO001-0.eq fixed.
% : v2.5.0 - Bug in GEO001-0.ax fixed.
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO001-0.ax').
%----Include Tarski geometry axioms for colinearity
include('Axioms/GEO001-1.ax').
%--------------------------------------------------------------------------
cnf(a_not_b,hypothesis,
a != b ).
cnf(and1_colinear,hypothesis,
colinear(a,b,d1) ).
cnf(abd2_colinear,hypothesis,
colinear(a,b,d2) ).
cnf(abd3_colinear,hypothesis,
colinear(a,b,d3) ).
cnf(prove_d1d2d3_colinear,negated_conjecture,
~ colinear(d1,d2,d3) ).
%--------------------------------------------------------------------------