TPTP Problem File: GEO012-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO012-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : Collinearity for 4 points
% Version : [Qua89] axioms.
% English : If any three distinct points x, y, and z are collinear and
% a fourth point w is collinear with x and y, then
% w is collinear with x and z and also with x and y.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [TPTP]
% Names :
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 26 ( 9 unt; 6 nHn; 23 RR)
% Number of literals : 71 ( 8 equ; 41 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-4 aty)
% Number of functors : 12 ( 12 usr; 7 con; 0-6 aty)
% Number of variables : 83 ( 3 sgn)
% SPC : CNF_UNK_RFO_SEQ_NHN
% Comments : This presentation may have alternatives/be incorrect.
% : Infinox says this has no finite (counter-) models.
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%----Include Tarski geometry axioms for colinearity
include('Axioms/GEO002-1.ax').
%--------------------------------------------------------------------------
cnf(a_not_b,hypothesis,
a != b ).
cnf(abc_colinear,hypothesis,
colinear(a,b,c) ).
cnf(abd_colinear,hypothesis,
colinear(a,b,d) ).
cnf(prove_colinearity,negated_conjecture,
( ~ colinear(a,c,d)
| ~ colinear(b,c,d) ) ).
%--------------------------------------------------------------------------