TPTP Problem File: GEO012-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO012-1 : TPTP v9.0.0. Bugfixed v2.5.0.
% Domain : Geometry
% Problem : Collinearity for 4 points
% Version : [MOW76] axioms.
% English : If any three distinct points x, y, and z are collinear and
% a fourth point w is collinear with x and y, then
% w is collinear with x and z and also with x and y.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% Source : [ANL]
% Names : T12 [MOW76]
% : t12.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 1.00 v2.5.0
% Syntax : Number of clauses : 30 ( 11 unt; 7 nHn; 27 RR)
% Number of literals : 81 ( 11 equ; 47 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-4 aty)
% Number of functors : 12 ( 12 usr; 7 con; 0-6 aty)
% Number of variables : 91 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
% Bugfixes : v1.0.1 - Bug in GEO001-0.eq fixed.
% : v2.5.0 - Bug in GEO001-0.ax fixed.
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO001-0.ax').
%----Include Tarski geometry axioms for colinearity
include('Axioms/GEO001-1.ax').
%--------------------------------------------------------------------------
cnf(a_not_b,hypothesis,
a != b ).
%---Quaife states that the next two hypotheses are unnecessary
cnf(a_not_c,hypothesis,
a != c ).
cnf(b_not_c,hypothesis,
b != c ).
cnf(abc_colinear,hypothesis,
colinear(a,b,c) ).
cnf(abd_colinear,hypothesis,
colinear(a,b,d) ).
cnf(prove_colinearity,negated_conjecture,
( ~ colinear(a,c,d)
| ~ colinear(b,c,d) ) ).
%--------------------------------------------------------------------------