TPTP Problem File: GEO011-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO011-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : The axiom set points are not collinear
% Version : [Qua89] axioms : Reduced & Augmented > Complete.
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v9.0.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.07 v6.0.0, 0.10 v5.3.0, 0.11 v5.2.0, 0.12 v5.1.0, 0.06 v5.0.0, 0.00 v3.3.0, 0.07 v3.2.0, 0.00 v2.7.0, 0.08 v2.6.0, 0.00 v2.0.0
% Syntax : Number of clauses : 23 ( 7 unt; 6 nHn; 20 RR)
% Number of literals : 67 ( 7 equ; 38 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-3 aty)
% Number of functors : 9 ( 9 usr; 3 con; 0-6 aty)
% Number of variables : 83 ( 3 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : Equidistant reformulated to same_distance
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms for colinearity
include('Axioms/GEO002-1.ax').
%--------------------------------------------------------------------------
%----A1 - Reflexivity axiom for equidistance
cnf(reflexivity_for_equidistance,axiom,
equal_distance(distance(X,Y),distance(Y,X)) ).
%----A2 - Transitivity axiom for equidistance
cnf(transitivity_for_equidistance,axiom,
( ~ equal_distance(distance(X,Y),distance(Z,V))
| ~ equal_distance(distance(X,Y),distance(V2,W))
| equal_distance(distance(Z,V),distance(V2,W)) ) ).
%----A3 Indentity axiom for equidistance
cnf(identity_for_equidistance,axiom,
( ~ equal_distance(distance(X,Y),distance(Z,Z))
| X = Y ) ).
%----A4 - Segment construction axiom, two clauses.
%----A4.1
cnf(segment_construction1,axiom,
between(X,Y,extension(X,Y,W,V)) ).
%----A4.2
cnf(segment_construction2,axiom,
equal_distance(distance(Y,extension(X,Y,W,V)),distance(W,V)) ).
%----A5 - Outer five-segment axiom
cnf(outer_five_segment,axiom,
( ~ equal_distance(distance(X,Y),distance(X1,Y1))
| ~ equal_distance(distance(Y,Z),distance(Y1,Z1))
| ~ equal_distance(distance(X,V),distance(X1,V1))
| ~ equal_distance(distance(Y,V),distance(Y1,V1))
| ~ between(X,Y,Z)
| ~ between(X1,Y1,Z1)
| X = Y
| equal_distance(distance(Z,V),distance(Z1,V1)) ) ).
%----A6 - Identity axiom for betweenness
cnf(identity_for_betweeness,axiom,
( ~ between(X,Y,X)
| X = Y ) ).
%----A7 - Inner Pasch axiom, two clauses.
%----A7.1
cnf(inner_pasch1,axiom,
( ~ between(U,V,W)
| ~ between(Y,X,W)
| between(V,inner_pasch(U,V,W,X,Y),Y) ) ).
%----A7.2
cnf(inner_pasch2,axiom,
( ~ between(U,V,W)
| ~ between(Y,X,W)
| between(X,inner_pasch(U,V,W,X,Y),U) ) ).
%----A8 - Lower dimension axiom, three clauses. A8.1
cnf(lower_dimension1,axiom,
~ between(lower_dimension_point_1,lower_dimension_point_2,lower_dimension_point_3) ).
%----A8.2
cnf(lower_dimension2,axiom,
~ between(lower_dimension_point_2,lower_dimension_point_3,lower_dimension_point_1) ).
%----A8.3
cnf(lower_dimension3,axiom,
~ between(lower_dimension_point_3,lower_dimension_point_1,lower_dimension_point_2) ).
%----A9 - Upper dimension axiom
cnf(upper_dimension,axiom,
( ~ equal_distance(distance(X,W),distance(X,V))
| ~ equal_distance(distance(Y,W),distance(Y,V))
| ~ equal_distance(distance(Z,W),distance(Z,V))
| between(X,Y,Z)
| between(Y,Z,X)
| between(Z,X,Y)
| W = V ) ).
%----A10 - Euclid's axiom, three clauses.
%----A10.1
cnf(euclid1,axiom,
( ~ between(U,W,Y)
| ~ between(V,W,X)
| U = W
| between(U,V,euclid1(U,V,W,X,Y)) ) ).
%----A10.2
cnf(euclid2,axiom,
( ~ between(U,W,Y)
| ~ between(V,W,X)
| U = W
| between(U,X,euclid2(U,V,W,X,Y)) ) ).
%----A10.3
cnf(euclid3,axiom,
( ~ between(U,W,Y)
| ~ between(V,W,X)
| U = W
| between(euclid1(U,V,W,X,Y),Y,euclid2(U,V,W,X,Y)) ) ).
%----A11 - Weakened continuity axiom, two clauses.
%----A11.1
cnf(continuity1,axiom,
( ~ equal_distance(distance(U,V),distance(U,V1))
| ~ equal_distance(distance(U,X),distance(U,X1))
| ~ between(U,V,X)
| ~ between(V,W,X)
| between(V1,continuous(U,V,V1,W,X,X1),X1) ) ).
%----A11.2
cnf(continuity2,axiom,
( ~ equal_distance(distance(U,V),distance(U,V1))
| ~ equal_distance(distance(U,X),distance(U,X1))
| ~ between(U,V,X)
| ~ between(V,W,X)
| equal_distance(distance(U,W),distance(U,continuous(U,V,V1,W,X,X1))) ) ).
cnf(prove_lower_dimension_points_not_colinear,negated_conjecture,
colinear(lower_dimension_point_1,lower_dimension_point_2,lower_dimension_point_3) ).
%--------------------------------------------------------------------------