TPTP Problem File: GEO006-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GEO006-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Geometry
% Problem : Betweenness for 3 points on a line
% Version : [Qua89] axioms : Augmented.
% English : For any three distinct points x, y, and z, if y is between
% x and z, then both x is not between y and z and z is not
% between x and y.
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [SST83] Schwabbauser et al. (1983), Metamathematische Methoden
% : [Qua89] Quaife (1989), Automated Development of Tarski's Geome
% Source : [Qua89]
% Names : T6 [Qua89]
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.00 v7.0.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.07 v6.0.0, 0.10 v5.5.0, 0.20 v5.3.0, 0.22 v5.2.0, 0.19 v5.1.0, 0.24 v5.0.0, 0.21 v4.1.0, 0.23 v4.0.1, 0.27 v3.7.0, 0.00 v3.5.0, 0.09 v3.4.0, 0.17 v3.3.0, 0.21 v3.2.0, 0.15 v3.1.0, 0.09 v2.7.0, 0.17 v2.6.0, 0.10 v2.5.0, 0.08 v2.4.0, 0.11 v2.2.1, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 54 ( 21 unt; 10 nHn; 37 RR)
% Number of literals : 125 ( 30 equ; 65 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-4 aty)
% Number of functors : 12 ( 12 usr; 6 con; 0-6 aty)
% Number of variables : 170 ( 9 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : This presentation may have alternatives/be incorrect.
%--------------------------------------------------------------------------
%----Include Tarski geometry axioms
include('Axioms/GEO002-0.ax').
%----Include definition of reflection
include('Axioms/GEO002-2.ax').
%--------------------------------------------------------------------------
cnf(d1,axiom,
equidistant(U,V,U,V) ).
cnf(d2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,U,V) ) ).
cnf(d3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,W,X) ) ).
cnf(d4_1,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(U,V,X,W) ) ).
cnf(d4_2,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(V,U,X,W) ) ).
cnf(d4_3,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(W,X,V,U) ) ).
cnf(d4_4,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,U,V) ) ).
cnf(d4_5,axiom,
( ~ equidistant(U,V,W,X)
| equidistant(X,W,V,U) ) ).
cnf(d5,axiom,
( ~ equidistant(U,V,W,X)
| ~ equidistant(W,X,Y,Z)
| equidistant(U,V,Y,Z) ) ).
cnf(e1,axiom,
V = extension(U,V,W,W) ).
cnf(b0,axiom,
( Y != extension(U,V,W,X)
| between(U,V,Y) ) ).
cnf(r2_1,axiom,
between(U,V,reflection(U,V)) ).
cnf(r2_2,axiom,
equidistant(V,reflection(U,V),U,V) ).
cnf(r3_1,axiom,
( U != V
| V = reflection(U,V) ) ).
cnf(r3_2,axiom,
U = reflection(U,U) ).
cnf(r4,axiom,
( V != reflection(U,V)
| U = V ) ).
cnf(d7,axiom,
equidistant(U,U,V,V) ).
cnf(d8,axiom,
( ~ equidistant(U,V,U1,V1)
| ~ equidistant(V,W,V1,W1)
| ~ between(U,V,W)
| ~ between(U1,V1,W1)
| equidistant(U,W,U1,W1) ) ).
cnf(d9,axiom,
( ~ between(U,V,W)
| ~ between(U,V,X)
| ~ equidistant(V,W,V,X)
| U = V
| W = X ) ).
cnf(d10_1,axiom,
( ~ between(U,V,W)
| U = V
| W = extension(U,V,V,W) ) ).
cnf(d10_2,axiom,
( ~ equidistant(W,X,Y,Z)
| extension(U,V,W,X) = extension(U,V,Y,Z)
| U = V ) ).
cnf(d10_3,axiom,
( extension(U,V,U,V) = extension(U,V,V,U)
| U = V ) ).
cnf(r5,axiom,
equidistant(V,U,V,reflection(reflection(U,V),V)) ).
cnf(r6,axiom,
U = reflection(reflection(U,V),V) ).
cnf(t3,axiom,
between(U,V,V) ).
cnf(b1,axiom,
( ~ between(U,W,X)
| U != X
| between(V,W,X) ) ).
cnf(t1,axiom,
( ~ between(U,V,W)
| between(W,V,U) ) ).
cnf(t2,axiom,
between(U,U,V) ).
cnf(b2,axiom,
( ~ between(U,V,W)
| ~ between(V,U,W)
| U = V ) ).
cnf(b3,axiom,
( ~ between(U,V,W)
| ~ between(U,W,V)
| V = W ) ).
cnf(a_not_c,hypothesis,
a != c ).
cnf(a_not_d,hypothesis,
a != d ).
cnf(c_not_d,hypothesis,
c != d ).
cnf(c_between_a_and_d,hypothesis,
between(a,c,d) ).
cnf(prove_not_between_others,negated_conjecture,
( between(c,a,d)
| between(a,d,c) ) ).
%--------------------------------------------------------------------------