TPTP Problem File: FLD097-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD097-4 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : Difficult inequality
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with re axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unsatisfiable
% Rating : 0.82 v9.0.0, 0.83 v8.2.0, 0.86 v7.5.0, 0.83 v7.0.0, 0.88 v6.3.0, 0.86 v6.2.0, 0.78 v6.1.0, 0.71 v5.5.0, 0.75 v5.4.0, 0.80 v5.1.0, 0.82 v5.0.0, 0.86 v4.1.0, 0.75 v4.0.1, 0.80 v4.0.0, 0.86 v3.4.0, 0.75 v3.3.0, 0.67 v3.1.0, 0.83 v2.7.0, 0.88 v2.6.0, 0.67 v2.5.0, 1.00 v2.1.0
% Syntax : Number of clauses : 41 ( 18 unt; 3 nHn; 41 RR)
% Number of literals : 92 ( 0 equ; 50 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 13 ( 13 usr; 9 con; 0-2 aty)
% Number of variables : 73 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD002-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD002-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(u_is_defined,hypothesis,
defined(u) ).
cnf(v_is_defined,hypothesis,
defined(v) ).
cnf(w_is_defined,hypothesis,
defined(w) ).
cnf(s_is_defined,hypothesis,
defined(s) ).
cnf(t_is_defined,hypothesis,
defined(t) ).
cnf(less_or_equal_8,negated_conjecture,
less_or_equal(additive_identity,a) ).
cnf(less_or_equal_9,negated_conjecture,
less_or_equal(additive_identity,b) ).
cnf(sum_10,negated_conjecture,
sum(multiplicative_identity,a,u) ).
cnf(sum_11,negated_conjecture,
sum(multiplicative_identity,b,v) ).
cnf(product_12,negated_conjecture,
product(u,v,w) ).
cnf(sum_13,negated_conjecture,
sum(a,b,s) ).
cnf(sum_14,negated_conjecture,
sum(multiplicative_identity,s,t) ).
cnf(not_less_or_equal_15,negated_conjecture,
~ less_or_equal(t,w) ).
%--------------------------------------------------------------------------