TPTP Problem File: FLD096-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD096-2 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : Difficult inequality
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with glxx axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 47 ( 23 unt; 3 nHn; 47 RR)
% Number of literals : 93 ( 0 equ; 47 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 15 ( 15 usr; 11 con; 0-2 aty)
% Number of variables : 50 ( 0 sgn)
% SPC : CNF_UNK_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD001-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD001-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(c_is_defined,hypothesis,
defined(c) ).
cnf(d_is_defined,hypothesis,
defined(d) ).
cnf(s_is_defined,hypothesis,
defined(s) ).
cnf(t_is_defined,hypothesis,
defined(t) ).
cnf(u_is_defined,hypothesis,
defined(u) ).
cnf(v_is_defined,hypothesis,
defined(v) ).
cnf(w_is_defined,hypothesis,
defined(w) ).
cnf(b_not_equal_to_additive_identity_10,negated_conjecture,
~ equalish(b,additive_identity) ).
cnf(d_not_equal_to_additive_identity_11,negated_conjecture,
~ equalish(d,additive_identity) ).
cnf(less_or_equal_12,negated_conjecture,
less_or_equal(additive_identity,b) ).
cnf(less_or_equal_13,negated_conjecture,
less_or_equal(additive_identity,d) ).
cnf(multiply_equals_u_14,negated_conjecture,
equalish(multiply(a,multiplicative_inverse(b)),u) ).
cnf(multiply_equals_v_15,negated_conjecture,
equalish(multiply(c,multiplicative_inverse(d)),v) ).
cnf(add_equals_s_16,negated_conjecture,
equalish(add(a,c),s) ).
cnf(add_equals_t_17,negated_conjecture,
equalish(add(b,d),t) ).
cnf(multiply_equals_w_18,negated_conjecture,
equalish(multiply(s,multiplicative_inverse(t)),w) ).
cnf(less_or_equal_19,negated_conjecture,
less_or_equal(u,v) ).
cnf(not_less_or_equal_20,negated_conjecture,
~ less_or_equal(w,v) ).
%--------------------------------------------------------------------------