TPTP Problem File: FLD061-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD061-2 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : The resulting inequality of a summation of two inequalities
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with glxx axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unsatisfiable
% Rating : 0.27 v9.0.0, 0.25 v8.2.0, 0.29 v7.5.0, 0.33 v7.1.0, 0.67 v7.0.0, 0.62 v6.3.0, 0.43 v6.2.0, 0.22 v6.1.0, 0.29 v5.5.0, 0.38 v5.4.0, 0.40 v5.2.0, 0.30 v5.1.0, 0.36 v5.0.0, 0.43 v4.1.0, 0.25 v4.0.1, 0.40 v4.0.0, 0.43 v3.7.0, 0.57 v3.5.0, 0.43 v3.4.0, 0.25 v3.3.0, 0.33 v2.7.0, 0.12 v2.6.0, 0.33 v2.5.0, 0.40 v2.4.0, 0.80 v2.3.0, 0.67 v2.2.1, 1.00 v2.1.0
% Syntax : Number of clauses : 38 ( 14 unt; 3 nHn; 38 RR)
% Number of literals : 84 ( 0 equ; 45 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 12 ( 12 usr; 8 con; 0-2 aty)
% Number of variables : 50 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD001-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD001-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(c_is_defined,hypothesis,
defined(c) ).
cnf(d_is_defined,hypothesis,
defined(d) ).
cnf(u_is_defined,hypothesis,
defined(u) ).
cnf(v_is_defined,hypothesis,
defined(v) ).
cnf(add_equals_u_7,negated_conjecture,
equalish(add(a,c),u) ).
cnf(add_equals_v_8,negated_conjecture,
equalish(add(d,b),v) ).
cnf(less_or_equal_9,negated_conjecture,
less_or_equal(a,b) ).
cnf(less_or_equal_10,negated_conjecture,
less_or_equal(c,d) ).
cnf(not_less_or_equal_11,negated_conjecture,
~ less_or_equal(u,v) ).
%--------------------------------------------------------------------------