TPTP Problem File: FLD053-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD053-4 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : Fraction calculation, part 7
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with re axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 47 ( 24 unt; 3 nHn; 47 RR)
% Number of literals : 98 ( 0 equ; 52 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 17 ( 17 usr; 13 con; 0-2 aty)
% Number of variables : 73 ( 0 sgn)
% SPC : CNF_UNK_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD002-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD002-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(c_is_defined,hypothesis,
defined(c) ).
cnf(d_is_defined,hypothesis,
defined(d) ).
cnf(u_is_defined,hypothesis,
defined(u) ).
cnf(k_is_defined,hypothesis,
defined(k) ).
cnf(l_is_defined,hypothesis,
defined(l) ).
cnf(p_is_defined,hypothesis,
defined(p) ).
cnf(q_is_defined,hypothesis,
defined(q) ).
cnf(s_is_defined,hypothesis,
defined(s) ).
cnf(t_is_defined,hypothesis,
defined(t) ).
cnf(not_sum_12,negated_conjecture,
~ sum(additive_identity,b,additive_identity) ).
cnf(not_sum_13,negated_conjecture,
~ sum(additive_identity,d,additive_identity) ).
cnf(product_14,negated_conjecture,
product(a,multiplicative_inverse(b),s) ).
cnf(product_15,negated_conjecture,
product(c,multiplicative_inverse(d),t) ).
cnf(sum_16,negated_conjecture,
sum(s,additive_inverse(t),u) ).
cnf(product_17,negated_conjecture,
product(a,d,p) ).
cnf(product_18,negated_conjecture,
product(b,c,q) ).
cnf(sum_19,negated_conjecture,
sum(p,additive_inverse(q),k) ).
cnf(product_20,negated_conjecture,
product(b,d,l) ).
cnf(not_product_21,negated_conjecture,
~ product(k,multiplicative_inverse(l),u) ).
%--------------------------------------------------------------------------