TPTP Problem File: FLD052-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD052-4 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : Fraction calculation, part 6
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with re axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unsatisfiable
% Rating : 0.64 v9.0.0, 0.58 v8.2.0, 0.57 v8.1.0, 0.29 v7.5.0, 0.50 v7.4.0, 0.33 v7.3.0, 0.50 v7.2.0, 0.67 v7.0.0, 0.62 v6.3.0, 0.57 v6.2.0, 0.44 v6.1.0, 0.29 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v5.2.0, 0.70 v5.1.0, 0.73 v5.0.0, 0.93 v4.1.0, 0.75 v4.0.1, 0.80 v4.0.0, 0.43 v3.4.0, 0.50 v3.3.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.50 v2.7.0, 0.88 v2.6.0, 0.67 v2.5.0, 1.00 v2.1.0
% Syntax : Number of clauses : 48 ( 25 unt; 3 nHn; 48 RR)
% Number of literals : 99 ( 0 equ; 52 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 18 ( 18 usr; 14 con; 0-2 aty)
% Number of variables : 73 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD002-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD002-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(c_is_defined,hypothesis,
defined(c) ).
cnf(d_is_defined,hypothesis,
defined(d) ).
cnf(u_is_defined,hypothesis,
defined(u) ).
cnf(v_is_defined,hypothesis,
defined(v) ).
cnf(k_is_defined,hypothesis,
defined(k) ).
cnf(l_is_defined,hypothesis,
defined(l) ).
cnf(p_is_defined,hypothesis,
defined(p) ).
cnf(q_is_defined,hypothesis,
defined(q) ).
cnf(s_is_defined,hypothesis,
defined(s) ).
cnf(t_is_defined,hypothesis,
defined(t) ).
cnf(not_sum_13,negated_conjecture,
~ sum(additive_identity,b,additive_identity) ).
cnf(not_sum_14,negated_conjecture,
~ sum(additive_identity,d,additive_identity) ).
cnf(product_15,negated_conjecture,
product(a,multiplicative_inverse(b),s) ).
cnf(product_16,negated_conjecture,
product(c,multiplicative_inverse(d),t) ).
cnf(sum_17,negated_conjecture,
sum(s,t,u) ).
cnf(product_18,negated_conjecture,
product(a,d,p) ).
cnf(product_19,negated_conjecture,
product(b,c,q) ).
cnf(sum_20,negated_conjecture,
sum(p,q,k) ).
cnf(product_21,negated_conjecture,
product(b,d,l) ).
cnf(not_product_22,negated_conjecture,
~ product(k,multiplicative_inverse(l),u) ).
%--------------------------------------------------------------------------