TPTP Problem File: FLD052-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD052-2 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : Fraction calculation, part 6
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with glxx axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unknown
% Rating : 1.00 v2.1.0
% Syntax : Number of clauses : 49 ( 25 unt; 3 nHn; 49 RR)
% Number of literals : 95 ( 0 equ; 47 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 18 ( 18 usr; 14 con; 0-2 aty)
% Number of variables : 50 ( 0 sgn)
% SPC : CNF_UNK_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD001-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD001-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(c_is_defined,hypothesis,
defined(c) ).
cnf(d_is_defined,hypothesis,
defined(d) ).
cnf(u_is_defined,hypothesis,
defined(u) ).
cnf(v_is_defined,hypothesis,
defined(v) ).
cnf(k_is_defined,hypothesis,
defined(k) ).
cnf(l_is_defined,hypothesis,
defined(l) ).
cnf(p_is_defined,hypothesis,
defined(p) ).
cnf(q_is_defined,hypothesis,
defined(q) ).
cnf(s_is_defined,hypothesis,
defined(s) ).
cnf(t_is_defined,hypothesis,
defined(t) ).
cnf(b_not_equal_to_additive_identity_13,negated_conjecture,
~ equalish(b,additive_identity) ).
cnf(d_not_equal_to_additive_identity_14,negated_conjecture,
~ equalish(d,additive_identity) ).
cnf(multiply_equals_s_15,negated_conjecture,
equalish(multiply(a,multiplicative_inverse(b)),s) ).
cnf(multiply_equals_t_16,negated_conjecture,
equalish(multiply(c,multiplicative_inverse(d)),t) ).
cnf(add_equals_u_17,negated_conjecture,
equalish(add(s,t),u) ).
cnf(multiply_equals_p_18,negated_conjecture,
equalish(multiply(a,d),p) ).
cnf(multiply_equals_q_19,negated_conjecture,
equalish(multiply(b,c),q) ).
cnf(add_equals_k_20,negated_conjecture,
equalish(add(p,q),k) ).
cnf(multiply_equals_l_21,negated_conjecture,
equalish(multiply(b,d),l) ).
cnf(multiply_not_equal_to_u_22,negated_conjecture,
~ equalish(multiply(k,multiplicative_inverse(l)),u) ).
%--------------------------------------------------------------------------