TPTP Problem File: FLD050-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD050-2 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : Fraction calculation, part 4
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with glxx axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unsatisfiable
% Rating : 0.73 v9.0.0, 0.67 v8.2.0, 0.86 v8.1.0, 0.71 v7.5.0, 0.83 v7.0.0, 0.88 v6.3.0, 0.86 v6.2.0, 0.78 v6.1.0, 1.00 v5.5.0, 0.88 v5.4.0, 0.90 v5.2.0, 1.00 v4.0.0, 0.86 v3.4.0, 0.75 v3.3.0, 1.00 v2.5.0, 0.80 v2.4.0, 1.00 v2.1.0
% Syntax : Number of clauses : 39 ( 15 unt; 3 nHn; 39 RR)
% Number of literals : 85 ( 0 equ; 47 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 12 ( 12 usr; 8 con; 0-2 aty)
% Number of variables : 50 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD001-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD001-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(c_is_defined,hypothesis,
defined(c) ).
cnf(d_is_defined,hypothesis,
defined(d) ).
cnf(k_is_defined,hypothesis,
defined(k) ).
cnf(s_is_defined,hypothesis,
defined(s) ).
cnf(b_not_equal_to_additive_identity_7,negated_conjecture,
~ equalish(b,additive_identity) ).
cnf(d_not_equal_to_additive_identity_8,negated_conjecture,
~ equalish(d,additive_identity) ).
cnf(multiply_equals_s_9,negated_conjecture,
equalish(multiply(a,multiplicative_inverse(b)),s) ).
cnf(multiply_equals_k_10,negated_conjecture,
equalish(multiply(a,d),k) ).
cnf(multiply_equals_k_11,negated_conjecture,
equalish(multiply(b,c),k) ).
cnf(multiply_not_equal_to_s_12,negated_conjecture,
~ equalish(multiply(c,multiplicative_inverse(d)),s) ).
%--------------------------------------------------------------------------