TPTP Problem File: FLD047-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD047-4 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : Fraction calculation, part 1
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with re axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unsatisfiable
% Rating : 0.18 v9.0.0, 0.17 v8.2.0, 0.29 v8.1.0, 0.14 v7.5.0, 0.17 v7.1.0, 0.33 v7.0.0, 0.38 v6.3.0, 0.29 v6.2.0, 0.33 v6.1.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.40 v5.3.0, 0.50 v5.2.0, 0.30 v5.1.0, 0.36 v5.0.0, 0.71 v4.1.0, 0.50 v4.0.1, 0.40 v4.0.0, 0.29 v3.4.0, 0.50 v3.3.0, 0.33 v2.7.0, 0.50 v2.6.0, 0.67 v2.5.0, 0.60 v2.4.0, 0.80 v2.3.0, 1.00 v2.1.0
% Syntax : Number of clauses : 38 ( 15 unt; 3 nHn; 38 RR)
% Number of literals : 89 ( 0 equ; 52 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 12 ( 12 usr; 8 con; 0-2 aty)
% Number of variables : 73 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD002-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD002-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(c_is_defined,hypothesis,
defined(c) ).
cnf(u_is_defined,hypothesis,
defined(u) ).
cnf(s_is_defined,hypothesis,
defined(s) ).
cnf(t_is_defined,hypothesis,
defined(t) ).
cnf(not_sum_7,negated_conjecture,
~ sum(additive_identity,b,additive_identity) ).
cnf(not_sum_8,negated_conjecture,
~ sum(additive_identity,c,additive_identity) ).
cnf(product_9,negated_conjecture,
product(a,multiplicative_inverse(b),u) ).
cnf(product_10,negated_conjecture,
product(a,c,s) ).
cnf(product_11,negated_conjecture,
product(b,c,t) ).
cnf(not_product_12,negated_conjecture,
~ product(s,multiplicative_inverse(t),u) ).
%--------------------------------------------------------------------------