TPTP Problem File: FLD031-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD031-1 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : If a is one, then the multiplicative inverse of a is also one
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Functional with glxx axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v8.1.0, 0.14 v7.5.0, 0.00 v7.4.0, 0.17 v7.1.0, 0.33 v7.0.0, 0.38 v6.3.0, 0.14 v6.2.0, 0.11 v6.1.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.30 v5.2.0, 0.10 v5.1.0, 0.18 v5.0.0, 0.29 v4.1.0, 0.12 v4.0.1, 0.20 v4.0.0, 0.14 v3.4.0, 0.25 v3.3.0, 0.33 v2.7.0, 0.12 v2.6.0, 0.33 v2.5.0, 0.00 v2.4.0, 0.20 v2.3.0, 0.33 v2.2.1, 0.33 v2.1.0
% Syntax : Number of clauses : 31 ( 7 unt; 3 nHn; 31 RR)
% Number of literals : 77 ( 0 equ; 46 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 50 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD001-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD001-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(a_equals_multiplicative_identity_2,negated_conjecture,
equalish(a,multiplicative_identity) ).
cnf(a_not_equal_to_additive_identity_3,negated_conjecture,
~ equalish(a,additive_identity) ).
cnf(multiplicative_inverses_not_equal,negated_conjecture,
~ equalish(multiplicative_inverse(a),multiplicative_identity) ).
%--------------------------------------------------------------------------