TPTP Problem File: FLD012-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : FLD012-4 : TPTP v9.0.0. Bugfixed v2.1.0.
% Domain : Field Theory (Ordered fields)
% Problem : Compatibility of operation and inverse in multiplicative group
% Version : [Dra93] axioms : Especial.
% Theorem formulation : Relational with re axiom set.
% English :
% Refs : [Dra93] Draeger (1993), Anwendung des Theorembeweisers SETHEO
% Source : [Dra93]
% Names :
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.08 v8.2.0, 0.14 v7.5.0, 0.00 v7.4.0, 0.17 v7.1.0, 0.33 v7.0.0, 0.38 v6.4.0, 0.25 v6.3.0, 0.14 v6.2.0, 0.11 v6.1.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.30 v5.2.0, 0.20 v5.1.0, 0.36 v5.0.0, 0.50 v4.1.0, 0.38 v4.0.1, 0.40 v4.0.0, 0.29 v3.5.0, 0.43 v3.4.0, 0.25 v3.3.0, 0.33 v3.1.0, 0.17 v2.7.0, 0.62 v2.6.0, 0.67 v2.5.0, 0.80 v2.4.0, 1.00 v2.3.0, 0.67 v2.2.1, 1.00 v2.1.0
% Syntax : Number of clauses : 35 ( 12 unt; 3 nHn; 35 RR)
% Number of literals : 86 ( 0 equ; 52 neg)
% Maximal clause size : 5 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-3 aty)
% Number of functors : 10 ( 10 usr; 6 con; 0-2 aty)
% Number of variables : 73 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments :
% Bugfixes : v2.1.0 - Bugfix in FLD002-0.ax
%--------------------------------------------------------------------------
include('Axioms/FLD002-0.ax').
%--------------------------------------------------------------------------
cnf(a_is_defined,hypothesis,
defined(a) ).
cnf(b_is_defined,hypothesis,
defined(b) ).
cnf(u_is_defined,hypothesis,
defined(u) ).
cnf(v_is_defined,hypothesis,
defined(v) ).
cnf(not_sum_5,negated_conjecture,
~ sum(additive_identity,a,additive_identity) ).
cnf(not_sum_6,negated_conjecture,
~ sum(additive_identity,b,additive_identity) ).
cnf(product_7,negated_conjecture,
product(a,b,u) ).
cnf(product_8,negated_conjecture,
product(multiplicative_inverse(a),multiplicative_inverse(b),v) ).
cnf(not_product_9,negated_conjecture,
~ product(multiplicative_identity,multiplicative_inverse(u),v) ).
%--------------------------------------------------------------------------