TPTP Problem File: DAT410^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT410^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Data Structures
% Problem : List reversal involution polymorphic, step 5 type instantiated
% Version : Especial.
% English : List reversal involution for polymorphic fixed-length lists. The
% proof is split into smaller steps. To simplify proof search, the
% axioms in each problem file have been preselected.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ListReversalInvolution/list-rev-invol-step5-typeInstantiated.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 26 ( 12 unt; 9 typ; 0 def)
% Number of atoms : 20 ( 20 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 257 ( 3 ~; 0 |; 0 &; 247 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 9 ( 4 !>P; 3 !>D)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 1 con; 0-5 aty)
% Number of variables : 51 ( 0 ^; 43 !; 0 ?; 51 :)
% ( 8 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH1_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(plus_type,type,
plus: nat > nat > nat ).
thf(list_type,type,
list: $tType > nat > $tType ).
thf(nil_type,type,
nil:
!>[A: $tType] : ( list @ A @ zero ) ).
thf(cons_type,type,
cons:
!>[A: $tType,N: nat] : ( A > ( list @ A @ N ) > ( list @ A @ ( suc @ N ) ) ) ).
thf(app_type,type,
app:
!>[A: $tType,N: nat,M: nat] : ( ( list @ A @ N ) > ( list @ A @ M ) > ( list @ A @ ( plus @ N @ M ) ) ) ).
thf(rev_type,type,
rev:
!>[A: $tType,N: nat] : ( ( list @ A @ N ) > ( list @ A @ N ) ) ).
thf(peano1,axiom,
! [N: nat] :
( ( suc @ N )
!= zero ) ).
thf(peano2,axiom,
! [N: nat,M: nat] :
( ( N != M )
=> ( ( suc @ N )
!= ( suc @ M ) ) ) ).
thf(peano3,axiom,
! [P: nat > $o] :
( ( P @ zero )
=> ( ! [M: nat] :
( ( P @ M )
=> ( P @ ( suc @ M ) ) )
=> ! [N: nat] : ( P @ N ) ) ) ).
thf(ax1,axiom,
! [N: nat] :
( ( plus @ zero @ N )
= N ) ).
thf(ax2,axiom,
! [N: nat,M: nat] :
( ( plus @ ( suc @ N ) @ M )
= ( suc @ ( plus @ N @ M ) ) ) ).
thf(ax3,axiom,
! [A: $tType,N: nat,X: list @ A @ N] :
( ( app @ A @ zero @ N @ ( nil @ A ) @ X )
= X ) ).
thf(ax4,axiom,
! [A: $tType,N: nat,M: nat,X: A,Y: list @ A @ N,Z: list @ A @ M] :
( ( app @ A @ ( suc @ N ) @ M @ ( cons @ A @ N @ X @ Y ) @ Z )
= ( cons @ A @ ( plus @ N @ M ) @ X @ ( app @ A @ N @ M @ Y @ Z ) ) ) ).
thf(ax5,axiom,
! [A: $tType] :
( ( rev @ A @ zero @ ( nil @ A ) )
= ( nil @ A ) ) ).
thf(ax6,axiom,
! [A: $tType,N: nat,X: A,Y: list @ A @ N] :
( ( rev @ A @ ( suc @ N ) @ ( cons @ A @ N @ X @ Y ) )
= ( app @ A @ N @ ( suc @ zero ) @ ( rev @ A @ N @ Y ) @ ( cons @ A @ zero @ X @ ( nil @ A ) ) ) ) ).
thf(plus_com,axiom,
! [N: nat,M: nat] :
( ( plus @ N @ M )
= ( plus @ M @ N ) ) ).
thf(plus1r,axiom,
! [N: nat] :
( ( suc @ N )
= ( plus @ N @ ( suc @ zero ) ) ) ).
thf(list_app_nil,axiom,
! [A: $tType,N: nat,L: list @ A @ N] :
( ( app @ A @ N @ zero @ L @ ( nil @ A ) )
= L ) ).
thf(list_rev_invol_step1,axiom,
! [A: $tType,N: nat,L: list @ A @ N] :
( ( rev @ A @ N @ ( rev @ A @ N @ L ) )
= ( rev @ A @ ( plus @ N @ zero ) @ ( app @ A @ N @ zero @ ( rev @ A @ N @ L ) @ ( nil @ A ) ) ) ) ).
thf(list_rev_invol_step2,axiom,
! [A: $tType,N: nat,L: list @ A @ N] :
( ( ( rev @ A @ N @ ( rev @ A @ N @ L ) )
= ( rev @ A @ ( plus @ N @ zero ) @ ( app @ A @ N @ zero @ ( rev @ A @ N @ L ) @ ( nil @ A ) ) ) )
=> ( ( rev @ A @ N @ ( rev @ A @ N @ L ) )
= ( app @ A @ zero @ N @ ( rev @ A @ zero @ ( nil @ A ) ) @ L ) ) ) ).
thf(list_rev_invol_step3,axiom,
! [A: $tType,N: nat,L: list @ A @ N] :
( ( ( rev @ A @ N @ ( rev @ A @ N @ L ) )
= ( app @ A @ zero @ N @ ( rev @ A @ zero @ ( nil @ A ) ) @ L ) )
=> ( ( rev @ A @ N @ ( rev @ A @ N @ L ) )
= ( app @ A @ zero @ N @ ( nil @ A ) @ L ) ) ) ).
thf(list_rev_invol_step4,axiom,
! [A: $tType,N: nat,L: list @ A @ N] :
( ( ( rev @ A @ N @ ( rev @ A @ N @ L ) )
= ( app @ A @ zero @ N @ ( nil @ A ) @ L ) )
=> ( ( rev @ A @ N @ ( rev @ A @ N @ L ) )
= L ) ) ).
thf(list_rev_invol,conjecture,
! [N: nat,L: list @ ( list @ ( list @ nat @ ( suc @ zero ) ) @ ( suc @ zero ) ) @ N] :
( ( rev @ ( list @ ( list @ nat @ ( suc @ zero ) ) @ ( suc @ zero ) ) @ N @ ( rev @ ( list @ ( list @ nat @ ( suc @ zero ) ) @ ( suc @ zero ) ) @ N @ L ) )
= L ) ).
%------------------------------------------------------------------------------