TPTP Problem File: DAT383^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT383^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Data Structures
% Problem : List involution lemma, induction step
% Version : Especial.
% English : List involution lemma. The proof is by induction with a separate
% problem file for the base and step case (with multiple subcases)
% as well as the correct instantiation of the induction axiom for
% lists. The main file uses the conjectures of the other files as
% lemmas in order to prove the final result. To simplify proof
% search, the axioms in each problem file have been preselected.
% For the actual induction proof, it is sufficient to consider the
% "step" problem files.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ListReversalInvolutionLemma/list-rev-invol-lem-indinst.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 23 ( 9 unt; 10 typ; 0 def)
% Number of atoms : 15 ( 15 equ; 0 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 186 ( 3 ~; 0 |; 0 &; 173 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Number of types : 3 ( 2 usr)
% Number of type decls : 10 ( 0 !>P; 4 !>D)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 2 con; 0-4 aty)
% Number of variables : 46 ( 0 ^; 41 !; 0 ?; 46 :)
% ( 5 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(elem_type,type,
elem: $tType ).
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(plus_type,type,
plus: nat > nat > nat ).
thf(list_type,type,
list: nat > $tType ).
thf(nil_type,type,
nil: list @ zero ).
thf(cons_type,type,
cons:
!>[N: nat] : ( elem > ( list @ N ) > ( list @ ( suc @ N ) ) ) ).
thf(app_type,type,
app:
!>[N: nat,M: nat] : ( ( list @ N ) > ( list @ M ) > ( list @ ( plus @ N @ M ) ) ) ).
thf(rev_type,type,
rev:
!>[N: nat] : ( ( list @ N ) > ( list @ N ) ) ).
thf(peano1,axiom,
! [N: nat] :
( ( suc @ N )
!= zero ) ).
thf(peano2,axiom,
! [N: nat,M: nat] :
( ( N != M )
=> ( ( suc @ N )
!= ( suc @ M ) ) ) ).
thf(peano3,axiom,
! [P: nat > $o] :
( ( P @ zero )
=> ( ! [M: nat] :
( ( P @ M )
=> ( P @ ( suc @ M ) ) )
=> ! [N: nat] : ( P @ N ) ) ) ).
thf(list_induct,axiom,
! [P: !>[N: nat] : ( ( list @ N ) > $o )] :
( ( P @ zero @ nil )
=> ( ! [M: nat,X: elem,Y: list @ M] :
( ( P @ M @ Y )
=> ( P @ ( suc @ M ) @ ( cons @ M @ X @ Y ) ) )
=> ! [N: nat,X: list @ N] : ( P @ N @ X ) ) ) ).
thf(ax1,axiom,
! [N: nat] :
( ( plus @ zero @ N )
= N ) ).
thf(ax2,axiom,
! [N: nat,M: nat] :
( ( plus @ ( suc @ N ) @ M )
= ( suc @ ( plus @ N @ M ) ) ) ).
thf(ax3,axiom,
! [N: nat,X: list @ N] :
( ( app @ zero @ N @ nil @ X )
= X ) ).
thf(ax4,axiom,
! [N: nat,M: nat,X: elem,Y: list @ N,Z: list @ M] :
( ( app @ ( suc @ N ) @ M @ ( cons @ N @ X @ Y ) @ Z )
= ( cons @ ( plus @ N @ M ) @ X @ ( app @ N @ M @ Y @ Z ) ) ) ).
thf(ax5,axiom,
( ( rev @ zero @ nil )
= nil ) ).
thf(ax6,axiom,
! [N: nat,X: elem,Y: list @ N] :
( ( rev @ ( suc @ N ) @ ( cons @ N @ X @ Y ) )
= ( app @ N @ ( suc @ zero ) @ ( rev @ N @ Y ) @ ( cons @ zero @ X @ nil ) ) ) ).
thf(plus_com,axiom,
! [N: nat,M: nat] :
( ( plus @ N @ M )
= ( plus @ M @ N ) ) ).
thf(plus1r,axiom,
! [N: nat] :
( ( suc @ N )
= ( plus @ N @ ( suc @ zero ) ) ) ).
thf(list_rev_invol_lem_indinst,conjecture,
( ! [M2: nat,L2: list @ M2] :
( ( rev @ ( plus @ zero @ M2 ) @ ( app @ zero @ M2 @ ( rev @ zero @ nil ) @ L2 ) )
= ( app @ M2 @ zero @ ( rev @ M2 @ L2 ) @ nil ) )
=> ( ! [N: nat,X: elem,L: list @ N] :
( ! [M2: nat,L2: list @ M2] :
( ( rev @ ( plus @ N @ M2 ) @ ( app @ N @ M2 @ ( rev @ N @ L ) @ L2 ) )
= ( app @ M2 @ N @ ( rev @ M2 @ L2 ) @ L ) )
=> ! [M2: nat,L2: list @ M2] :
( ( rev @ ( plus @ ( suc @ N ) @ M2 ) @ ( app @ ( suc @ N ) @ M2 @ ( rev @ ( suc @ N ) @ ( cons @ N @ X @ L ) ) @ L2 ) )
= ( app @ M2 @ ( suc @ N ) @ ( rev @ M2 @ L2 ) @ ( cons @ N @ X @ L ) ) ) )
=> ! [N: nat,L: list @ N,M2: nat,L2: list @ M2] :
( ( rev @ ( plus @ N @ M2 ) @ ( app @ N @ M2 @ ( rev @ N @ L ) @ L2 ) )
= ( app @ M2 @ N @ ( rev @ M2 @ L2 ) @ L ) ) ) ) ).
%------------------------------------------------------------------------------