TPTP Problem File: DAT377^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : DAT377^1 : TPTP v9.2.1. Released v9.2.0.
% Domain   : Data Structures
% Problem  : Associativity of list append polymorphic, base case
% Version  : Especial.
% English  : Associativity of append for polymorphic fixed-length lists. The
%            problem file for the base and step case (with multiple subcases)
%            as well as the correct instantiation of the induction axiom for
%            lists. The main file uses the conjectures of the other files as
%            lemmas in order to prove the final result. To simplify proof
%            search, the axioms in each problem file have been preselected.

% Refs     : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
%          : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
%          : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source   : [Rot25]
% Names    : ListAppAssoc/list-app-assoc-base.p [Rot25]

% Status   : Theorem
% Rating   : ? v9.2.0
% Syntax   : Number of formulae    :   12 (   4 unt;   8 typ;   0 def)
%            Number of atoms       :    4 (   4 equ;   0 cnn)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :   63 (   0   ~;   0   |;   0   &;  63   @)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   4 avg)
%            Number of types       :    1 (   1 usr)
%            Number of type decls  :    8 (   3 !>P;   2 !>D)
%            Number of type conns  :    9 (   9   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    8 (   7 usr;   1 con; 0-5 aty)
%            Number of variables   :   18 (   0   ^;  12   !;   0   ?;  18   :)
%                                         (   6  !>;   0  ?*;   0  @-;   0  @+)
% SPC      : DH1_THM_EQU_NAR

% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
    nat: $tType ).

thf(zero_type,type,
    zero: nat ).

thf(suc_type,type,
    suc: nat > nat ).

thf(plus_type,type,
    plus: nat > nat > nat ).

thf(list_type,type,
    list: $tType > nat > $tType ).

thf(nil_type,type,
    nil: 
      !>[A: $tType] : ( list @ A @ zero ) ).

thf(cons_type,type,
    cons: 
      !>[A: $tType,N: nat] : ( A > ( list @ A @ N ) > ( list @ A @ ( suc @ N ) ) ) ).

thf(app_type,type,
    app: 
      !>[A: $tType,N: nat,M: nat] : ( ( list @ A @ N ) > ( list @ A @ M ) > ( list @ A @ ( plus @ N @ M ) ) ) ).

thf(ax1,axiom,
    ! [N: nat] :
      ( ( plus @ zero @ N )
      = N ) ).

thf(ax3,axiom,
    ! [A: $tType,N: nat,X: list @ A @ N] :
      ( ( app @ A @ zero @ N @ ( nil @ A ) @ X )
      = X ) ).

thf(plus_assoc,axiom,
    ! [M1: nat,M2: nat,M3: nat] :
      ( ( plus @ M1 @ ( plus @ M2 @ M3 ) )
      = ( plus @ ( plus @ M1 @ M2 ) @ M3 ) ) ).

thf(list_app_assoc_base,conjecture,
    ! [A: $tType,M2: nat,L2: list @ A @ M2,M3: nat,L3: list @ A @ M3] :
      ( ( app @ A @ zero @ ( plus @ M2 @ M3 ) @ ( nil @ A ) @ ( app @ A @ M2 @ M3 @ L2 @ L3 ) )
      = ( app @ A @ ( plus @ zero @ M2 ) @ M3 @ ( app @ A @ zero @ M2 @ ( nil @ A ) @ L2 ) @ L3 ) ) ).

%------------------------------------------------------------------------------