TPTP Problem File: DAT361^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT361^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Data Structures
% Problem : Associativity of list append, instantiation case
% Version : Especial.
% English : Associativity of list append. The proof is by induction with a
% problem file for the base and step case (with multiple subcases)
% as well as the correct instantiation of the induction axiom for
% lists. The main file uses the conjectures of the other files as
% lemmas in order to prove the final result. To simplify proof
% search, the axioms in each problem file have been preselected.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ListAppAssoc/list-app-assoc-indinst.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 15 ( 3 unt; 9 typ; 0 def)
% Number of atoms : 9 ( 9 equ; 0 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 144 ( 2 ~; 0 |; 0 &; 135 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Number of types : 3 ( 2 usr)
% Number of type decls : 9 ( 0 !>P; 3 !>D)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 2 con; 0-4 aty)
% Number of variables : 27 ( 0 ^; 23 !; 0 ?; 27 :)
% ( 4 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(elem_type,type,
elem: $tType ).
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(plus_type,type,
plus: nat > nat > nat ).
thf(list_type,type,
list: nat > $tType ).
thf(nil_type,type,
nil: list @ zero ).
thf(cons_type,type,
cons:
!>[N: nat] : ( elem > ( list @ N ) > ( list @ ( suc @ N ) ) ) ).
thf(app_type,type,
app:
!>[N: nat,M: nat] : ( ( list @ N ) > ( list @ M ) > ( list @ ( plus @ N @ M ) ) ) ).
thf(peano2,axiom,
! [N: nat,M: nat] :
( ( N != M )
=> ( ( suc @ N )
!= ( suc @ M ) ) ) ).
thf(list_induct,axiom,
! [P: !>[N: nat] : ( ( list @ N ) > $o )] :
( ( P @ zero @ nil )
=> ( ! [M: nat,X: elem,Y: list @ M] :
( ( P @ M @ Y )
=> ( P @ ( suc @ M ) @ ( cons @ M @ X @ Y ) ) )
=> ! [N: nat,X: list @ N] : ( P @ N @ X ) ) ) ).
thf(ax1,axiom,
! [N: nat] :
( ( plus @ zero @ N )
= N ) ).
thf(ax2,axiom,
! [N: nat,M: nat] :
( ( plus @ ( suc @ N ) @ M )
= ( suc @ ( plus @ N @ M ) ) ) ).
thf(plus_assoc,axiom,
! [M1: nat,M2: nat,M3: nat] :
( ( plus @ M1 @ ( plus @ M2 @ M3 ) )
= ( plus @ ( plus @ M1 @ M2 ) @ M3 ) ) ).
thf(list_app_assoc_indinst,conjecture,
! [M2: nat,L2: list @ M2,M3: nat,L3: list @ M3] :
( ( ( app @ zero @ ( plus @ M2 @ M3 ) @ nil @ ( app @ M2 @ M3 @ L2 @ L3 ) )
= ( app @ ( plus @ zero @ M2 ) @ M3 @ ( app @ zero @ M2 @ nil @ L2 ) @ L3 ) )
=> ( ! [M: nat,X: elem,L: list @ M] :
( ( ( app @ M @ ( plus @ M2 @ M3 ) @ L @ ( app @ M2 @ M3 @ L2 @ L3 ) )
= ( app @ ( plus @ M @ M2 ) @ M3 @ ( app @ M @ M2 @ L @ L2 ) @ L3 ) )
=> ( ( app @ ( suc @ M ) @ ( plus @ M2 @ M3 ) @ ( cons @ M @ X @ L ) @ ( app @ M2 @ M3 @ L2 @ L3 ) )
= ( app @ ( plus @ ( suc @ M ) @ M2 ) @ M3 @ ( app @ ( suc @ M ) @ M2 @ ( cons @ M @ X @ L ) @ L2 ) @ L3 ) ) )
=> ! [M: nat,L: list @ M] :
( ( app @ M @ ( plus @ M2 @ M3 ) @ L @ ( app @ M2 @ M3 @ L2 @ L3 ) )
= ( app @ ( plus @ M @ M2 ) @ M3 @ ( app @ M @ M2 @ L @ L2 ) @ L3 ) ) ) ) ).
%------------------------------------------------------------------------------