TPTP Problem File: DAT346^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT346^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Data Structures
% Problem : The empty list satisfies the empty predicate
% Version : Especial.
% English : Defines the predicate empty and shows that choosing the empty list
% satisfies the predicate.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ChoiceList/dchoice_list_empty.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 10 ( 2 unt; 7 typ; 0 def)
% Number of atoms : 4 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 20 ( 1 ~; 0 |; 0 &; 19 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 7 ( 0 !>P; 2 !>D)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 6 usr; 2 con; 0-3 aty)
% Number of variables : 6 ( 0 ^; 3 !; 0 ?; 6 :)
% ( 2 !>; 0 ?*; 0 @-; 1 @+)
% SPC : DH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(list_type,type,
list: nat > $tType ).
thf(nil_type,type,
nil: list @ zero ).
thf(cons_type,type,
cons:
!>[N: nat] : ( nat > ( list @ N ) > ( list @ ( suc @ N ) ) ) ).
thf(empty_type,type,
empty:
!>[N: nat] : ( ( list @ N ) > $o ) ).
thf(empty1,axiom,
empty @ zero @ nil ).
thf(empty2,axiom,
! [L: nat,H: nat,T: list @ L] :
~ ( empty @ ( suc @ L ) @ ( cons @ L @ H @ T ) ) ).
thf(c,conjecture,
( empty @ zero
@ @+[X: list @ zero] : ( empty @ zero @ X ) ) ).
%------------------------------------------------------------------------------