TPTP Problem File: DAT344^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT344^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Data Structures
% Problem : Nil is a right-neutral element of app polymorphic, step case
% Version : Especial.
% English : Nil is a right-neutral element of app for polymorphic fixed-length
% lists. The proof is by induction with a separate problem file for
% the base and step case as well as the correct instantiation of the
% induction axiom for lists. The main file uses the conjectures of
% the other files as lemmas in order to prove the final result. To
% simplify proof search, the lemmas in the problem file for the
% induction step have been preselected.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ListAppNil/list-app-nil-indstep.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 12 ( 3 unt; 8 typ; 0 def)
% Number of atoms : 5 ( 5 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 72 ( 0 ~; 0 |; 0 &; 71 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Number of types : 1 ( 1 usr)
% Number of type decls : 8 ( 3 !>P; 2 !>D)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 1 con; 0-5 aty)
% Number of variables : 19 ( 0 ^; 13 !; 0 ?; 19 :)
% ( 6 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH1_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(plus_type,type,
plus: nat > nat > nat ).
thf(list_type,type,
list: $tType > nat > $tType ).
thf(nil_type,type,
nil:
!>[A: $tType] : ( list @ A @ zero ) ).
thf(cons_type,type,
cons:
!>[A: $tType,N: nat] : ( A > ( list @ A @ N ) > ( list @ A @ ( suc @ N ) ) ) ).
thf(app_type,type,
app:
!>[A: $tType,N: nat,M: nat] : ( ( list @ A @ N ) > ( list @ A @ M ) > ( list @ A @ ( plus @ N @ M ) ) ) ).
thf(ax2,axiom,
! [N: nat,M: nat] :
( ( plus @ ( suc @ N ) @ M )
= ( suc @ ( plus @ N @ M ) ) ) ).
thf(ax4,axiom,
! [A: $tType,N: nat,M: nat,X: A,Y: list @ A @ N,Z: list @ A @ M] :
( ( app @ A @ ( suc @ N ) @ M @ ( cons @ A @ N @ X @ Y ) @ Z )
= ( cons @ A @ ( plus @ N @ M ) @ X @ ( app @ A @ N @ M @ Y @ Z ) ) ) ).
thf(plus_zero_r,axiom,
! [M: nat] :
( ( plus @ M @ zero )
= M ) ).
thf(list_app_nil_indstep,conjecture,
! [A: $tType,N: nat,X: A,L: list @ A @ N] :
( ( ( app @ A @ N @ zero @ L @ ( nil @ A ) )
= L )
=> ( ( app @ A @ ( suc @ N ) @ zero @ ( cons @ A @ N @ X @ L ) @ ( nil @ A ) )
= ( cons @ A @ N @ X @ L ) ) ) ).
%------------------------------------------------------------------------------