TPTP Problem File: DAT343^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT343^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Data Structures
% Problem : Nil is a right-neutral element of app polymorphic, instantiation
% Version : Especial.
% English : Nil is a right-neutral element of app for polymorphic fixed-length
% lists. The proof is by induction with a separate problem file for
% the base and step case as well as the correct instantiation of the
% induction axiom for lists. The main file uses the conjectures of
% the other files as lemmas in order to prove the final result. To
% simplify proof search, the lemmas in the problem file for the
% induction step have been preselected.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ListAppNil/list-app-nil-indinst.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 18 ( 6 unt; 8 typ; 0 def)
% Number of atoms : 12 ( 12 equ; 0 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 138 ( 3 ~; 0 |; 0 &; 125 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 8 ( 3 !>P; 3 !>D)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 1 con; 0-5 aty)
% Number of variables : 39 ( 0 ^; 32 !; 0 ?; 39 :)
% ( 7 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH1_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(plus_type,type,
plus: nat > nat > nat ).
thf(list_type,type,
list: $tType > nat > $tType ).
thf(nil_type,type,
nil:
!>[A: $tType] : ( list @ A @ zero ) ).
thf(cons_type,type,
cons:
!>[A: $tType,N: nat] : ( A > ( list @ A @ N ) > ( list @ A @ ( suc @ N ) ) ) ).
thf(app_type,type,
app:
!>[A: $tType,N: nat,M: nat] : ( ( list @ A @ N ) > ( list @ A @ M ) > ( list @ A @ ( plus @ N @ M ) ) ) ).
thf(peano1,axiom,
! [N: nat] :
( ( suc @ N )
!= zero ) ).
thf(peano2,axiom,
! [N: nat,M: nat] :
( ( N != M )
=> ( ( suc @ N )
!= ( suc @ M ) ) ) ).
thf(peano3,axiom,
! [P: nat > $o] :
( ( P @ zero )
=> ( ! [M: nat] :
( ( P @ M )
=> ( P @ ( suc @ M ) ) )
=> ! [N: nat] : ( P @ N ) ) ) ).
thf(list_induct,axiom,
! [A: $tType,
P: !>[N: nat] : ( ( list @ A @ N ) > $o )] :
( ( P @ zero @ ( nil @ A ) )
=> ( ! [M: nat,X: A,Y: list @ A @ M] :
( ( P @ M @ Y )
=> ( P @ ( suc @ M ) @ ( cons @ A @ M @ X @ Y ) ) )
=> ! [N: nat,X: list @ A @ N] : ( P @ N @ X ) ) ) ).
thf(ax1,axiom,
! [N: nat] :
( ( plus @ zero @ N )
= N ) ).
thf(ax2,axiom,
! [N: nat,M: nat] :
( ( plus @ ( suc @ N ) @ M )
= ( suc @ ( plus @ N @ M ) ) ) ).
thf(ax3,axiom,
! [A: $tType,N: nat,X: list @ A @ N] :
( ( app @ A @ zero @ N @ ( nil @ A ) @ X )
= X ) ).
thf(ax4,axiom,
! [A: $tType,N: nat,M: nat,X: A,Y: list @ A @ N,Z: list @ A @ M] :
( ( app @ A @ ( suc @ N ) @ M @ ( cons @ A @ N @ X @ Y ) @ Z )
= ( cons @ A @ ( plus @ N @ M ) @ X @ ( app @ A @ N @ M @ Y @ Z ) ) ) ).
thf(plus_zero_r,axiom,
! [M: nat] :
( ( plus @ M @ zero )
= M ) ).
thf(list_app_nil_indinst,conjecture,
! [A: $tType] :
( ( ( app @ A @ zero @ zero @ ( nil @ A ) @ ( nil @ A ) )
= ( nil @ A ) )
=> ( ! [M: nat,X: A,L: list @ A @ M] :
( ( ( app @ A @ M @ zero @ L @ ( nil @ A ) )
= L )
=> ( ( app @ A @ ( suc @ M ) @ zero @ ( cons @ A @ M @ X @ L ) @ ( nil @ A ) )
= ( cons @ A @ M @ X @ L ) ) )
=> ! [M: nat,L: list @ A @ M] :
( ( app @ A @ M @ zero @ L @ ( nil @ A ) )
= L ) ) ) ).
%------------------------------------------------------------------------------