TPTP Problem File: DAT340^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT340^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Data Structures
% Problem : Nil is a right-neutral element of app, step case
% Version : Especial.
% English : Nil is a right-neutral element of app. The proof is by induction
% with a separate problem file for the base and step case as well as
% the correct instantiation of the induction axiom for lists. The
% main file uses the conjectures of the other files as lemmas in
% order to prove the final result. To simplify proof search, the
% lemmas in the problem file for the induction step have been
% preselected.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ListAppNil/list-app-nil-indstep.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 13 ( 3 unt; 9 typ; 0 def)
% Number of atoms : 5 ( 5 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 53 ( 0 ~; 0 |; 0 &; 52 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Number of types : 2 ( 2 usr)
% Number of type decls : 9 ( 0 !>P; 2 !>D)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 2 con; 0-4 aty)
% Number of variables : 14 ( 0 ^; 11 !; 0 ?; 14 :)
% ( 3 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(elem_type,type,
elem: $tType ).
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(plus_type,type,
plus: nat > nat > nat ).
thf(list_type,type,
list: nat > $tType ).
thf(nil_type,type,
nil: list @ zero ).
thf(cons_type,type,
cons:
!>[N: nat] : ( elem > ( list @ N ) > ( list @ ( suc @ N ) ) ) ).
thf(app_type,type,
app:
!>[N: nat,M: nat] : ( ( list @ N ) > ( list @ M ) > ( list @ ( plus @ N @ M ) ) ) ).
thf(ax2,axiom,
! [N: nat,M: nat] :
( ( plus @ ( suc @ N ) @ M )
= ( suc @ ( plus @ N @ M ) ) ) ).
thf(ax4,axiom,
! [N: nat,M: nat,X: elem,Y: list @ N,Z: list @ M] :
( ( app @ ( suc @ N ) @ M @ ( cons @ N @ X @ Y ) @ Z )
= ( cons @ ( plus @ N @ M ) @ X @ ( app @ N @ M @ Y @ Z ) ) ) ).
thf(plus_zero_r,axiom,
! [M: nat] :
( ( plus @ M @ zero )
= M ) ).
thf(list_app_nil_indstep,conjecture,
! [N: nat,X: elem,L: list @ N] :
( ( ( app @ N @ zero @ L @ nil )
= L )
=> ( ( app @ ( suc @ N ) @ zero @ ( cons @ N @ X @ L ) @ nil )
= ( cons @ N @ X @ L ) ) ) ).
%------------------------------------------------------------------------------