TPTP Problem File: DAT338^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : DAT338^1 : TPTP v9.2.1. Released v9.2.0.
% Domain   : Data Structures
% Problem  : Nil is a right-neutral element of app, base case
% Version  : Especial.
% English  : Nil is a right-neutral element of app. The proof is by induction
%            with a separate problem file for the base and step case as well as
%            the correct instantiation of the induction axiom for lists. The 
%            main file uses the conjectures of the other files as lemmas in
%            order to prove the final result. To simplify proof search, the
%            lemmas in the problem file for the induction step have been
%            preselected.

% Refs     : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
%          : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
%          : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source   : [Rot25]
% Names    : ListAppNil/list-app-nil-base.p [Rot25]

% Status   : Theorem
% Rating   : ? v9.2.0
% Syntax   : Number of formulae    :   19 (   7 unt;   9 typ;   0 def)
%            Number of atoms       :    9 (   9 equ;   0 cnn)
%            Maximal formula atoms :    2 (   0 avg)
%            Number of connectives :   80 (   3   ~;   0   |;   0   &;  70   @)
%                                         (   0 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   12 (   5 avg)
%            Number of types       :    3 (   2 usr)
%            Number of type decls  :    9 (   0 !>P;   3 !>D)
%            Number of type conns  :   10 (  10   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    8 (   7 usr;   2 con; 0-4 aty)
%            Number of variables   :   27 (   0   ^;  23   !;   0   ?;  27   :)
%                                         (   4  !>;   0  ?*;   0  @-;   0  @+)
% SPC      : DH0_THM_EQU_NAR

% Comments :
%------------------------------------------------------------------------------
thf(elem_type,type,
    elem: $tType ).

thf(nat_type,type,
    nat: $tType ).

thf(zero_type,type,
    zero: nat ).

thf(suc_type,type,
    suc: nat > nat ).

thf(plus_type,type,
    plus: nat > nat > nat ).

thf(list_type,type,
    list: nat > $tType ).

thf(nil_type,type,
    nil: list @ zero ).

thf(cons_type,type,
    cons: 
      !>[N: nat] : ( elem > ( list @ N ) > ( list @ ( suc @ N ) ) ) ).

thf(app_type,type,
    app: 
      !>[N: nat,M: nat] : ( ( list @ N ) > ( list @ M ) > ( list @ ( plus @ N @ M ) ) ) ).

thf(peano1,axiom,
    ! [N: nat] :
      ( ( suc @ N )
     != zero ) ).

thf(peano2,axiom,
    ! [N: nat,M: nat] :
      ( ( N != M )
     => ( ( suc @ N )
       != ( suc @ M ) ) ) ).

thf(peano3,axiom,
    ! [P: nat > $o] :
      ( ( P @ zero )
     => ( ! [M: nat] :
            ( ( P @ M )
           => ( P @ ( suc @ M ) ) )
       => ! [N: nat] : ( P @ N ) ) ) ).

thf(list_induct,axiom,
    ! [P: !>[N: nat] : ( ( list @ N ) > $o )] :
      ( ( P @ zero @ nil )
     => ( ! [M: nat,X: elem,Y: list @ M] :
            ( ( P @ M @ Y )
           => ( P @ ( suc @ M ) @ ( cons @ M @ X @ Y ) ) )
       => ! [N: nat,X: list @ N] : ( P @ N @ X ) ) ) ).

thf(ax1,axiom,
    ! [N: nat] :
      ( ( plus @ zero @ N )
      = N ) ).

thf(ax2,axiom,
    ! [N: nat,M: nat] :
      ( ( plus @ ( suc @ N ) @ M )
      = ( suc @ ( plus @ N @ M ) ) ) ).

thf(ax3,axiom,
    ! [N: nat,X: list @ N] :
      ( ( app @ zero @ N @ nil @ X )
      = X ) ).

thf(ax4,axiom,
    ! [N: nat,M: nat,X: elem,Y: list @ N,Z: list @ M] :
      ( ( app @ ( suc @ N ) @ M @ ( cons @ N @ X @ Y ) @ Z )
      = ( cons @ ( plus @ N @ M ) @ X @ ( app @ N @ M @ Y @ Z ) ) ) ).

thf(plus_zero_r,axiom,
    ! [M: nat] :
      ( ( plus @ M @ zero )
      = M ) ).

thf(list_app_nil_base,conjecture,
    ( ( app @ zero @ zero @ nil @ nil )
    = nil ) ).

%------------------------------------------------------------------------------