TPTP Problem File: DAT142^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT142^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Data Structures
% Problem : Coinductive list prefix 88
% Version : [Bla16] axioms : Especial.
% English :
% Refs : [Loc10] Lochbihler (2010), Coinductive
% : [RB15] Reynolds & Blanchette (2015), A Decision Procedure for
% : [Bla16] Blanchette (2016), Email to Geoff Sutcliffe
% Source : [Bla16]
% Names : coinductive_list_prefix__88.p [Bla16]
% Status : Theorem
% Rating : 1.00 v7.5.0, 0.33 v7.2.0, 0.50 v7.1.0
% Syntax : Number of formulae : 392 ( 124 unt; 59 typ; 0 def)
% Number of atoms : 902 ( 185 equ; 0 cnn)
% Maximal formula atoms : 13 ( 2 avg)
% Number of connectives : 3636 ( 31 ~; 8 |; 37 &;3153 @)
% ( 0 <=>; 407 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 7 avg)
% Number of types : 7 ( 6 usr)
% Number of type conns : 186 ( 186 >; 0 *; 0 +; 0 <<)
% Number of symbols : 54 ( 53 usr; 2 con; 0-4 aty)
% Number of variables : 893 ( 48 ^; 781 !; 14 ?; 893 :)
% ( 50 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2016-07-13 14:41:00.894
%------------------------------------------------------------------------------
%----Could-be-implicit typings (9)
thf(ty_t_Coinductive__List_Ollist,type,
coinductive_llist: $tType > $tType ).
thf(ty_t_Extended__Nat_Oenat,type,
extended_enat: $tType ).
thf(ty_t_Real_Oreal,type,
real: $tType ).
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_Num_Onum,type,
num: $tType ).
thf(ty_t_Nat_Onat,type,
nat: $tType ).
thf(ty_t_Int_Oint,type,
int: $tType ).
thf(ty_t_itself,type,
itself: $tType > $tType ).
thf(ty_tf_a,type,
a: $tType ).
%----Explicit typings (50)
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ouminus,type,
uminus:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Oord,type,
ord:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Lattices_Olattice,type,
lattice:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Opreorder,type,
preorder:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Lattices_Oboolean__algebra,type,
boolean_algebra:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Lattices_Osemilattice__inf,type,
semilattice_inf:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Rings_Olinordered__semidom,type,
linordered_semidom:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Oordered__ab__group__add,type,
ordered_ab_group_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Olinordered__ab__group__add,type,
linord219039673up_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Archimedean__Field_Ofloor__ceiling,type,
archim1727834104eiling:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Complete__Lattices_Ocomplete__lattice,type,
comple187826305attice:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Archimedean__Field_Oarchimedean__field,type,
archim1804426504_field:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni770627133id_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Countable__Complete__Lattices_Ocountable__complete__lattice,type,
counta840220525attice:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_c_Archimedean__Field_Oceiling,type,
archimedean_ceiling:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_Archimedean__Field_Ofloor__ceiling__class_Ofloor,type,
archim2085082626_floor:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_Archimedean__Field_Oround,type,
archimedean_round:
!>[A: $tType] : ( A > int ) ).
thf(sy_c_Coinductive__List_Ofinite__lprefix,type,
coindu328551480prefix:
!>[A: $tType] : ( ( coinductive_llist @ A ) > ( coinductive_llist @ A ) > $o ) ).
thf(sy_c_Coinductive__List_Olappend,type,
coinductive_lappend:
!>[A: $tType] : ( ( coinductive_llist @ A ) > ( coinductive_llist @ A ) > ( coinductive_llist @ A ) ) ).
thf(sy_c_Coinductive__List_Olfilter,type,
coinductive_lfilter:
!>[A: $tType] : ( ( A > $o ) > ( coinductive_llist @ A ) > ( coinductive_llist @ A ) ) ).
thf(sy_c_Coinductive__List_Olfinite,type,
coinductive_lfinite:
!>[A: $tType] : ( ( coinductive_llist @ A ) > $o ) ).
thf(sy_c_Coinductive__List_Olprefix,type,
coinductive_lprefix:
!>[A: $tType] : ( ( coinductive_llist @ A ) > ( coinductive_llist @ A ) > $o ) ).
thf(sy_c_Extended__Nat_Oenat,type,
extended_enat2: nat > extended_enat ).
thf(sy_c_Groups_Ouminus__class_Ouminus,type,
uminus_uminus:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_Hilbert__Choice_OGreatestM,type,
hilbert_GreatestM:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( A > $o ) > A ) ).
thf(sy_c_Hilbert__Choice_OLeastM,type,
hilbert_LeastM:
!>[A: $tType,B: $tType] : ( ( A > B ) > ( A > $o ) > A ) ).
thf(sy_c_Int_Onat,type,
nat2: int > nat ).
thf(sy_c_Lattices_Oinf__class_Oinf,type,
inf_inf:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Nat_OSuc,type,
suc: nat > nat ).
thf(sy_c_Nat_Osemiring__1__class_Oof__nat,type,
semiring_1_of_nat:
!>[A: $tType] : ( nat > A ) ).
thf(sy_c_Nat__Transfer_Otransfer__morphism,type,
nat_tr1645093318rphism:
!>[B: $tType,A: $tType] : ( ( B > A ) > ( B > $o ) > $o ) ).
thf(sy_c_Num_Onumeral__class_Onumeral,type,
numeral_numeral:
!>[A: $tType] : ( num > A ) ).
thf(sy_c_Num_Opred__numeral,type,
pred_numeral: num > nat ).
thf(sy_c_Order__Continuity_Ocountable__complete__lattice__class_Occlfp,type,
order_1929166836_cclfp:
!>[A: $tType] : ( ( A > A ) > A ) ).
thf(sy_c_Orderings_Oord__class_Oless,type,
ord_less:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oorder__class_Oantimono,type,
order_antimono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Oorder__class_Omono,type,
order_mono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Oorder__class_Ostrict__mono,type,
order_strict_mono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Pure_Otype,type,
type2:
!>[A: $tType] : ( itself @ A ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_Topological__Spaces_Omonoseq,type,
topological_monoseq:
!>[A: $tType] : ( ( nat > A ) > $o ) ).
thf(sy_c_member,type,
member:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v_xs____,type,
xs: coinductive_llist @ a ).
thf(sy_v_ys____,type,
ys: coinductive_llist @ a ).
%----Relevant facts (256)
thf(fact_0__092_060open_062xs_A_092_060sqinter_062_Ays_A_092_060le_062_Axs_092_060close_062,axiom,
ord_less_eq @ ( coinductive_llist @ a ) @ ( inf_inf @ ( coinductive_llist @ a ) @ xs @ ys ) @ xs ).
% \<open>xs \<sqinter> ys \<le> xs\<close>
thf(fact_1_lprefix__refl,axiom,
! [A: $tType,Xs: coinductive_llist @ A] : ( coinductive_lprefix @ A @ Xs @ Xs ) ).
% lprefix_refl
thf(fact_2_llist_Oleq__refl,axiom,
! [A: $tType,X: coinductive_llist @ A] : ( coinductive_lprefix @ A @ X @ X ) ).
% llist.leq_refl
thf(fact_3_inf__apply,axiom,
! [B: $tType,A: $tType] :
( ( semilattice_inf @ B @ ( type2 @ B ) )
=> ( ( inf_inf @ ( A > B ) )
= ( ^ [F: A > B,G: A > B,X2: A] : ( inf_inf @ B @ ( F @ X2 ) @ ( G @ X2 ) ) ) ) ) ).
% inf_apply
thf(fact_4_inf_Oidem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A] :
( ( inf_inf @ A @ A2 @ A2 )
= A2 ) ) ).
% inf.idem
thf(fact_5_inf__idem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A] :
( ( inf_inf @ A @ X @ X )
= X ) ) ).
% inf_idem
thf(fact_6_inf_Oleft__idem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( inf_inf @ A @ A2 @ ( inf_inf @ A @ A2 @ B2 ) )
= ( inf_inf @ A @ A2 @ B2 ) ) ) ).
% inf.left_idem
thf(fact_7_inf__left__idem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( inf_inf @ A @ X @ ( inf_inf @ A @ X @ Y ) )
= ( inf_inf @ A @ X @ Y ) ) ) ).
% inf_left_idem
thf(fact_8_inf_Oright__idem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( inf_inf @ A @ ( inf_inf @ A @ A2 @ B2 ) @ B2 )
= ( inf_inf @ A @ A2 @ B2 ) ) ) ).
% inf.right_idem
thf(fact_9_inf__right__idem,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( inf_inf @ A @ ( inf_inf @ A @ X @ Y ) @ Y )
= ( inf_inf @ A @ X @ Y ) ) ) ).
% inf_right_idem
thf(fact_10_lprefix__trans,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A,Zs: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ Xs @ Ys )
=> ( ( coinductive_lprefix @ A @ Ys @ Zs )
=> ( coinductive_lprefix @ A @ Xs @ Zs ) ) ) ).
% lprefix_trans
thf(fact_11_llist_Oleq__trans,axiom,
! [A: $tType,X: coinductive_llist @ A,Y: coinductive_llist @ A,Z: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ X @ Y )
=> ( ( coinductive_lprefix @ A @ Y @ Z )
=> ( coinductive_lprefix @ A @ X @ Z ) ) ) ).
% llist.leq_trans
thf(fact_12_inf_Obounded__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ ( inf_inf @ A @ B2 @ C ) )
= ( ( ord_less_eq @ A @ A2 @ B2 )
& ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% inf.bounded_iff
thf(fact_13_le__inf__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( ord_less_eq @ A @ X @ ( inf_inf @ A @ Y @ Z ) )
= ( ( ord_less_eq @ A @ X @ Y )
& ( ord_less_eq @ A @ X @ Z ) ) ) ) ).
% le_inf_iff
thf(fact_14_le__llist__conv__lprefix,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( coinductive_llist @ A ) )
= ( coinductive_lprefix @ A ) ) ).
% le_llist_conv_lprefix
thf(fact_15_wlog__linorder__le,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [P: A > A > $o,B2: A,A2: A] :
( ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ( ( P @ B2 @ A2 )
=> ( P @ A2 @ B2 ) )
=> ( P @ A2 @ B2 ) ) ) ) ).
% wlog_linorder_le
thf(fact_16_inf_OcoboundedI2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [B2: A,C: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ C )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C ) ) ) ).
% inf.coboundedI2
thf(fact_17_inf_OcoboundedI1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,C: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ C )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C ) ) ) ).
% inf.coboundedI1
thf(fact_18_inf_Oabsorb__iff2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [B4: A,A4: A] :
( ( inf_inf @ A @ A4 @ B4 )
= B4 ) ) ) ) ).
% inf.absorb_iff2
thf(fact_19_inf_Oabsorb__iff1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [A4: A,B4: A] :
( ( inf_inf @ A @ A4 @ B4 )
= A4 ) ) ) ) ).
% inf.absorb_iff1
thf(fact_20_inf_Ocobounded2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ B2 ) ) ).
% inf.cobounded2
thf(fact_21_inf_Ocobounded1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ A2 ) ) ).
% inf.cobounded1
thf(fact_22_inf_Oorder__iff,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [A4: A,B4: A] :
( A4
= ( inf_inf @ A @ A4 @ B4 ) ) ) ) ) ).
% inf.order_iff
thf(fact_23_inf__greatest,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ X @ Z )
=> ( ord_less_eq @ A @ X @ ( inf_inf @ A @ Y @ Z ) ) ) ) ) ).
% inf_greatest
thf(fact_24_inf_OboundedI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ A2 @ C )
=> ( ord_less_eq @ A @ A2 @ ( inf_inf @ A @ B2 @ C ) ) ) ) ) ).
% inf.boundedI
thf(fact_25_inf_OboundedE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ ( inf_inf @ A @ B2 @ C ) )
=> ~ ( ( ord_less_eq @ A @ A2 @ B2 )
=> ~ ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% inf.boundedE
thf(fact_26_inf__absorb2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( inf_inf @ A @ X @ Y )
= Y ) ) ) ).
% inf_absorb2
thf(fact_27_inf__absorb1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( inf_inf @ A @ X @ Y )
= X ) ) ) ).
% inf_absorb1
thf(fact_28_inf_Oabsorb2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( inf_inf @ A @ A2 @ B2 )
= B2 ) ) ) ).
% inf.absorb2
thf(fact_29_inf_Oabsorb1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( inf_inf @ A @ A2 @ B2 )
= A2 ) ) ) ).
% inf.absorb1
thf(fact_30_le__iff__inf,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [X2: A,Y2: A] :
( ( inf_inf @ A @ X2 @ Y2 )
= X2 ) ) ) ) ).
% le_iff_inf
thf(fact_31_inf__unique,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [F2: A > A > A,X: A,Y: A] :
( ! [X3: A,Y3: A] : ( ord_less_eq @ A @ ( F2 @ X3 @ Y3 ) @ X3 )
=> ( ! [X3: A,Y3: A] : ( ord_less_eq @ A @ ( F2 @ X3 @ Y3 ) @ Y3 )
=> ( ! [X3: A,Y3: A,Z2: A] :
( ( ord_less_eq @ A @ X3 @ Y3 )
=> ( ( ord_less_eq @ A @ X3 @ Z2 )
=> ( ord_less_eq @ A @ X3 @ ( F2 @ Y3 @ Z2 ) ) ) )
=> ( ( inf_inf @ A @ X @ Y )
= ( F2 @ X @ Y ) ) ) ) ) ) ).
% inf_unique
thf(fact_32_inf_OorderI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( A2
= ( inf_inf @ A @ A2 @ B2 ) )
=> ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% inf.orderI
thf(fact_33_inf_OorderE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( A2
= ( inf_inf @ A @ A2 @ B2 ) ) ) ) ).
% inf.orderE
thf(fact_34_le__infI2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [B2: A,X: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ X )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ X ) ) ) ).
% le_infI2
thf(fact_35_le__infI1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,X: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ X )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ X ) ) ) ).
% le_infI1
thf(fact_36_inf__mono,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,C: A,B2: A,D: A] :
( ( ord_less_eq @ A @ A2 @ C )
=> ( ( ord_less_eq @ A @ B2 @ D )
=> ( ord_less_eq @ A @ ( inf_inf @ A @ A2 @ B2 ) @ ( inf_inf @ A @ C @ D ) ) ) ) ) ).
% inf_mono
thf(fact_37_le__infI,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ X @ A2 )
=> ( ( ord_less_eq @ A @ X @ B2 )
=> ( ord_less_eq @ A @ X @ ( inf_inf @ A @ A2 @ B2 ) ) ) ) ) ).
% le_infI
thf(fact_38_le__infE,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,A2: A,B2: A] :
( ( ord_less_eq @ A @ X @ ( inf_inf @ A @ A2 @ B2 ) )
=> ~ ( ( ord_less_eq @ A @ X @ A2 )
=> ~ ( ord_less_eq @ A @ X @ B2 ) ) ) ) ).
% le_infE
thf(fact_39_inf__le2,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ Y ) ) ).
% inf_le2
thf(fact_40_inf__le1,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ X ) ) ).
% inf_le1
thf(fact_41_inf__sup__ord_I1_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ X ) ) ).
% inf_sup_ord(1)
thf(fact_42_inf__sup__ord_I2_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ ( inf_inf @ A @ X @ Y ) @ Y ) ) ).
% inf_sup_ord(2)
thf(fact_43_less__eq__llist__def,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( coinductive_llist @ A ) )
= ( coinductive_lprefix @ A ) ) ).
% less_eq_llist_def
thf(fact_44_inf__left__commute,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( inf_inf @ A @ X @ ( inf_inf @ A @ Y @ Z ) )
= ( inf_inf @ A @ Y @ ( inf_inf @ A @ X @ Z ) ) ) ) ).
% inf_left_commute
thf(fact_45_mem__Collect__eq,axiom,
! [A: $tType,A2: A,P: A > $o] :
( ( member @ A @ A2 @ ( collect @ A @ P ) )
= ( P @ A2 ) ) ).
% mem_Collect_eq
thf(fact_46_Collect__mem__eq,axiom,
! [A: $tType,A5: set @ A] :
( ( collect @ A
@ ^ [X2: A] : ( member @ A @ X2 @ A5 ) )
= A5 ) ).
% Collect_mem_eq
thf(fact_47_Collect__cong,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X3: A] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect @ A @ P )
= ( collect @ A @ Q ) ) ) ).
% Collect_cong
thf(fact_48_ext,axiom,
! [B: $tType,A: $tType,F2: A > B,G2: A > B] :
( ! [X3: A] :
( ( F2 @ X3 )
= ( G2 @ X3 ) )
=> ( F2 = G2 ) ) ).
% ext
thf(fact_49_inf_Oleft__commute,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [B2: A,A2: A,C: A] :
( ( inf_inf @ A @ B2 @ ( inf_inf @ A @ A2 @ C ) )
= ( inf_inf @ A @ A2 @ ( inf_inf @ A @ B2 @ C ) ) ) ) ).
% inf.left_commute
thf(fact_50_inf__commute,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ( ( inf_inf @ A )
= ( ^ [X2: A,Y2: A] : ( inf_inf @ A @ Y2 @ X2 ) ) ) ) ).
% inf_commute
thf(fact_51_inf_Ocommute,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ( ( inf_inf @ A )
= ( ^ [A4: A,B4: A] : ( inf_inf @ A @ B4 @ A4 ) ) ) ) ).
% inf.commute
thf(fact_52_inf__assoc,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( inf_inf @ A @ ( inf_inf @ A @ X @ Y ) @ Z )
= ( inf_inf @ A @ X @ ( inf_inf @ A @ Y @ Z ) ) ) ) ).
% inf_assoc
thf(fact_53_inf_Oassoc,axiom,
! [A: $tType] :
( ( semilattice_inf @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A,C: A] :
( ( inf_inf @ A @ ( inf_inf @ A @ A2 @ B2 ) @ C )
= ( inf_inf @ A @ A2 @ ( inf_inf @ A @ B2 @ C ) ) ) ) ).
% inf.assoc
thf(fact_54_inf__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( semilattice_inf @ B @ ( type2 @ B ) )
=> ( ( inf_inf @ ( A > B ) )
= ( ^ [F: A > B,G: A > B,X2: A] : ( inf_inf @ B @ ( F @ X2 ) @ ( G @ X2 ) ) ) ) ) ).
% inf_fun_def
thf(fact_55_inf__sup__aci_I1_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ( ( inf_inf @ A )
= ( ^ [X2: A,Y2: A] : ( inf_inf @ A @ Y2 @ X2 ) ) ) ) ).
% inf_sup_aci(1)
thf(fact_56_inf__sup__aci_I2_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( inf_inf @ A @ ( inf_inf @ A @ X @ Y ) @ Z )
= ( inf_inf @ A @ X @ ( inf_inf @ A @ Y @ Z ) ) ) ) ).
% inf_sup_aci(2)
thf(fact_57_inf__sup__aci_I3_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( inf_inf @ A @ X @ ( inf_inf @ A @ Y @ Z ) )
= ( inf_inf @ A @ Y @ ( inf_inf @ A @ X @ Z ) ) ) ) ).
% inf_sup_aci(3)
thf(fact_58_inf__sup__aci_I4_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( inf_inf @ A @ X @ ( inf_inf @ A @ X @ Y ) )
= ( inf_inf @ A @ X @ Y ) ) ) ).
% inf_sup_aci(4)
thf(fact_59_lprefix__down__linear,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Zs: coinductive_llist @ A,Ys: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ Xs @ Zs )
=> ( ( coinductive_lprefix @ A @ Ys @ Zs )
=> ( ( coinductive_lprefix @ A @ Xs @ Ys )
| ( coinductive_lprefix @ A @ Ys @ Xs ) ) ) ) ).
% lprefix_down_linear
thf(fact_60_llist_Oleq__antisym,axiom,
! [A: $tType,X: coinductive_llist @ A,Y: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ X @ Y )
=> ( ( coinductive_lprefix @ A @ Y @ X )
=> ( X = Y ) ) ) ).
% llist.leq_antisym
thf(fact_61_lprefix__antisym,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ Xs @ Ys )
=> ( ( coinductive_lprefix @ A @ Ys @ Xs )
=> ( Xs = Ys ) ) ) ).
% lprefix_antisym
thf(fact_62_order__refl,axiom,
! [A: $tType] :
( ( preorder @ A @ ( type2 @ A ) )
=> ! [X: A] : ( ord_less_eq @ A @ X @ X ) ) ).
% order_refl
thf(fact_63_le__funD,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ! [F2: A > B,G2: A > B,X: A] :
( ( ord_less_eq @ ( A > B ) @ F2 @ G2 )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( G2 @ X ) ) ) ) ).
% le_funD
thf(fact_64_le__funE,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ! [F2: A > B,G2: A > B,X: A] :
( ( ord_less_eq @ ( A > B ) @ F2 @ G2 )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( G2 @ X ) ) ) ) ).
% le_funE
thf(fact_65_le__funI,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ! [F2: A > B,G2: A > B] :
( ! [X3: A] : ( ord_less_eq @ B @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
=> ( ord_less_eq @ ( A > B ) @ F2 @ G2 ) ) ) ).
% le_funI
thf(fact_66_le__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ( ( ord_less_eq @ ( A > B ) )
= ( ^ [F: A > B,G: A > B] :
! [X2: A] : ( ord_less_eq @ B @ ( F @ X2 ) @ ( G @ X2 ) ) ) ) ) ).
% le_fun_def
thf(fact_67_order__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B @ ( type2 @ B ) )
& ( order @ A @ ( type2 @ A ) ) )
=> ! [A2: A,F2: B > A,B2: B,C: B] :
( ( ord_less_eq @ A @ A2 @ ( F2 @ B2 ) )
=> ( ( ord_less_eq @ B @ B2 @ C )
=> ( ! [X3: B,Y3: B] :
( ( ord_less_eq @ B @ X3 @ Y3 )
=> ( ord_less_eq @ A @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq @ A @ A2 @ ( F2 @ C ) ) ) ) ) ) ).
% order_subst1
thf(fact_68_order__subst2,axiom,
! [A: $tType,C2: $tType] :
( ( ( order @ C2 @ ( type2 @ C2 ) )
& ( order @ A @ ( type2 @ A ) ) )
=> ! [A2: A,B2: A,F2: A > C2,C: C2] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ C2 @ ( F2 @ B2 ) @ C )
=> ( ! [X3: A,Y3: A] :
( ( ord_less_eq @ A @ X3 @ Y3 )
=> ( ord_less_eq @ C2 @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq @ C2 @ ( F2 @ A2 ) @ C ) ) ) ) ) ).
% order_subst2
thf(fact_69_ord__eq__le__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B @ ( type2 @ B ) )
& ( ord @ A @ ( type2 @ A ) ) )
=> ! [A2: A,F2: B > A,B2: B,C: B] :
( ( A2
= ( F2 @ B2 ) )
=> ( ( ord_less_eq @ B @ B2 @ C )
=> ( ! [X3: B,Y3: B] :
( ( ord_less_eq @ B @ X3 @ Y3 )
=> ( ord_less_eq @ A @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq @ A @ A2 @ ( F2 @ C ) ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_70_ord__le__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B @ ( type2 @ B ) )
& ( ord @ A @ ( type2 @ A ) ) )
=> ! [A2: A,B2: A,F2: A > B,C: B] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ( F2 @ B2 )
= C )
=> ( ! [X3: A,Y3: A] :
( ( ord_less_eq @ A @ X3 @ Y3 )
=> ( ord_less_eq @ B @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( ord_less_eq @ B @ ( F2 @ A2 ) @ C ) ) ) ) ) ).
% ord_le_eq_subst
thf(fact_71_eq__iff,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( ^ [Y4: A,Z3: A] : ( Y4 = Z3 ) )
= ( ^ [X2: A,Y2: A] :
( ( ord_less_eq @ A @ X2 @ Y2 )
& ( ord_less_eq @ A @ Y2 @ X2 ) ) ) ) ) ).
% eq_iff
thf(fact_72_antisym,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ X )
=> ( X = Y ) ) ) ) ).
% antisym
thf(fact_73_dual__order_Oantisym,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ A2 @ B2 )
=> ( A2 = B2 ) ) ) ) ).
% dual_order.antisym
thf(fact_74_dual__order_Otrans,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [B2: A,A2: A,C: A] :
( ( ord_less_eq @ A @ B2 @ A2 )
=> ( ( ord_less_eq @ A @ C @ B2 )
=> ( ord_less_eq @ A @ C @ A2 ) ) ) ) ).
% dual_order.trans
thf(fact_75_linorder__wlog,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [P: A > A > $o,A2: A,B2: A] :
( ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( P @ A3 @ B3 ) )
=> ( ! [A3: A,B3: A] :
( ( P @ B3 @ A3 )
=> ( P @ A3 @ B3 ) )
=> ( P @ A2 @ B2 ) ) ) ) ).
% linorder_wlog
thf(fact_76_dual__order_Orefl,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [A2: A] : ( ord_less_eq @ A @ A2 @ A2 ) ) ).
% dual_order.refl
thf(fact_77_order__trans,axiom,
! [A: $tType] :
( ( preorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z )
=> ( ord_less_eq @ A @ X @ Z ) ) ) ) ).
% order_trans
thf(fact_78_order__class_Oorder_Oantisym,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ) ).
% order_class.order.antisym
thf(fact_79_ord__le__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( B2 = C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% ord_le_eq_trans
thf(fact_80_ord__eq__le__trans,axiom,
! [A: $tType] :
( ( ord @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A,C: A] :
( ( A2 = B2 )
=> ( ( ord_less_eq @ A @ B2 @ C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% ord_eq_le_trans
thf(fact_81_antisym__conv,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_less_eq @ A @ X @ Y )
= ( X = Y ) ) ) ) ).
% antisym_conv
thf(fact_82_le__cases3,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( ( ord_less_eq @ A @ X @ Y )
=> ~ ( ord_less_eq @ A @ Y @ Z ) )
=> ( ( ( ord_less_eq @ A @ Y @ X )
=> ~ ( ord_less_eq @ A @ X @ Z ) )
=> ( ( ( ord_less_eq @ A @ X @ Z )
=> ~ ( ord_less_eq @ A @ Z @ Y ) )
=> ( ( ( ord_less_eq @ A @ Z @ Y )
=> ~ ( ord_less_eq @ A @ Y @ X ) )
=> ( ( ( ord_less_eq @ A @ Y @ Z )
=> ~ ( ord_less_eq @ A @ Z @ X ) )
=> ~ ( ( ord_less_eq @ A @ Z @ X )
=> ~ ( ord_less_eq @ A @ X @ Y ) ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_83_order_Otrans,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A,C: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ( ord_less_eq @ A @ B2 @ C )
=> ( ord_less_eq @ A @ A2 @ C ) ) ) ) ).
% order.trans
thf(fact_84_le__cases,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ~ ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ A @ Y @ X ) ) ) ).
% le_cases
thf(fact_85_eq__refl,axiom,
! [A: $tType] :
( ( preorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( X = Y )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% eq_refl
thf(fact_86_linear,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
| ( ord_less_eq @ A @ Y @ X ) ) ) ).
% linear
thf(fact_87_lfp_Oleq__antisym,axiom,
! [A: $tType] :
( ( comple187826305attice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ X )
=> ( X = Y ) ) ) ) ).
% lfp.leq_antisym
thf(fact_88_gfp_Oleq__antisym,axiom,
! [A: $tType] :
( ( comple187826305attice @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( X = Y ) ) ) ) ).
% gfp.leq_antisym
thf(fact_89_lfp_Oleq__trans,axiom,
! [A: $tType] :
( ( comple187826305attice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z )
=> ( ord_less_eq @ A @ X @ Z ) ) ) ) ).
% lfp.leq_trans
thf(fact_90_gfp_Oleq__trans,axiom,
! [A: $tType] :
( ( comple187826305attice @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A,Z: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_less_eq @ A @ Z @ Y )
=> ( ord_less_eq @ A @ Z @ X ) ) ) ) ).
% gfp.leq_trans
thf(fact_91_lfp_Oleq__refl,axiom,
! [A: $tType] :
( ( comple187826305attice @ A @ ( type2 @ A ) )
=> ! [X: A] : ( ord_less_eq @ A @ X @ X ) ) ).
% lfp.leq_refl
thf(fact_92_Coinductive__List_Ofinite__lprefix__def,axiom,
! [A: $tType] :
( ( coindu328551480prefix @ A )
= ( coinductive_lprefix @ A ) ) ).
% Coinductive_List.finite_lprefix_def
thf(fact_93_Coinductive__List_Olprefix__nitpick__simps,axiom,
! [A: $tType] :
( ( coinductive_lprefix @ A )
= ( ^ [Xs2: coinductive_llist @ A,Ys2: coinductive_llist @ A] :
( ( ( coinductive_lfinite @ A @ Xs2 )
=> ( coindu328551480prefix @ A @ Xs2 @ Ys2 ) )
& ( ~ ( coinductive_lfinite @ A @ Xs2 )
=> ( Xs2 = Ys2 ) ) ) ) ) ).
% Coinductive_List.lprefix_nitpick_simps
thf(fact_94_antimonoD,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_antimono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ Y ) @ ( F2 @ X ) ) ) ) ) ).
% antimonoD
thf(fact_95_antimonoE,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_antimono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ Y ) @ ( F2 @ X ) ) ) ) ) ).
% antimonoE
thf(fact_96_antimonoI,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B] :
( ! [X3: A,Y3: A] :
( ( ord_less_eq @ A @ X3 @ Y3 )
=> ( ord_less_eq @ B @ ( F2 @ Y3 ) @ ( F2 @ X3 ) ) )
=> ( order_antimono @ A @ B @ F2 ) ) ) ).
% antimonoI
thf(fact_97_antimono__def,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ( ( order_antimono @ A @ B )
= ( ^ [F: A > B] :
! [X2: A,Y2: A] :
( ( ord_less_eq @ A @ X2 @ Y2 )
=> ( ord_less_eq @ B @ ( F @ Y2 ) @ ( F @ X2 ) ) ) ) ) ) ).
% antimono_def
thf(fact_98_lprefix__lfiniteD,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ Xs @ Ys )
=> ( ( coinductive_lfinite @ A @ Ys )
=> ( coinductive_lfinite @ A @ Xs ) ) ) ).
% lprefix_lfiniteD
thf(fact_99_not__lfinite__lprefix__conv__eq,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A] :
( ~ ( coinductive_lfinite @ A @ Xs )
=> ( ( coinductive_lprefix @ A @ Xs @ Ys )
= ( Xs = Ys ) ) ) ).
% not_lfinite_lprefix_conv_eq
thf(fact_100_decseqD,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [F2: nat > A,I: nat,J: nat] :
( ( order_antimono @ nat @ A @ F2 )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ A @ ( F2 @ J ) @ ( F2 @ I ) ) ) ) ) ).
% decseqD
thf(fact_101_decseq__def,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( order_antimono @ nat @ A )
= ( ^ [X4: nat > A] :
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ A @ ( X4 @ N ) @ ( X4 @ M ) ) ) ) ) ) ).
% decseq_def
thf(fact_102_lprefix__lappend__same,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A,Zs: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ ( coinductive_lappend @ A @ Xs @ Ys ) @ ( coinductive_lappend @ A @ Xs @ Zs ) )
= ( ( coinductive_lfinite @ A @ Xs )
=> ( coinductive_lprefix @ A @ Ys @ Zs ) ) ) ).
% lprefix_lappend_same
thf(fact_103_strict__mono__less__eq,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% strict_mono_less_eq
thf(fact_104_mono__inf,axiom,
! [B: $tType,A: $tType] :
( ( ( semilattice_inf @ A @ ( type2 @ A ) )
& ( semilattice_inf @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,A5: A,B5: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ord_less_eq @ B @ ( F2 @ ( inf_inf @ A @ A5 @ B5 ) ) @ ( inf_inf @ B @ ( F2 @ A5 ) @ ( F2 @ B5 ) ) ) ) ) ).
% mono_inf
thf(fact_105_lfinite__lappend,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A] :
( ( coinductive_lfinite @ A @ ( coinductive_lappend @ A @ Xs @ Ys ) )
= ( ( coinductive_lfinite @ A @ Xs )
& ( coinductive_lfinite @ A @ Ys ) ) ) ).
% lfinite_lappend
thf(fact_106_lprefix__lappend,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A] : ( coinductive_lprefix @ A @ Xs @ ( coinductive_lappend @ A @ Xs @ Ys ) ) ).
% lprefix_lappend
thf(fact_107_lappend__lprefixE,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A,Zs: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ ( coinductive_lappend @ A @ Xs @ Ys ) @ Zs )
=> ~ ! [Zs2: coinductive_llist @ A] :
( Zs
!= ( coinductive_lappend @ A @ Xs @ Zs2 ) ) ) ).
% lappend_lprefixE
thf(fact_108_lprefix__lappendD,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A,Zs: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ Xs @ ( coinductive_lappend @ A @ Ys @ Zs ) )
=> ( ( coinductive_lprefix @ A @ Xs @ Ys )
| ( coinductive_lprefix @ A @ Ys @ Xs ) ) ) ).
% lprefix_lappendD
thf(fact_109_lprefix__conv__lappend,axiom,
! [A: $tType] :
( ( coinductive_lprefix @ A )
= ( ^ [Xs2: coinductive_llist @ A,Ys2: coinductive_llist @ A] :
? [Zs3: coinductive_llist @ A] :
( Ys2
= ( coinductive_lappend @ A @ Xs2 @ Zs3 ) ) ) ) ).
% lprefix_conv_lappend
thf(fact_110_lprefix__lappend__sameI,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A,Zs: coinductive_llist @ A] :
( ( coinductive_lprefix @ A @ Xs @ Ys )
=> ( coinductive_lprefix @ A @ ( coinductive_lappend @ A @ Zs @ Xs ) @ ( coinductive_lappend @ A @ Zs @ Ys ) ) ) ).
% lprefix_lappend_sameI
thf(fact_111_strict__mono__eq,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ( F2 @ X )
= ( F2 @ Y ) )
= ( X = Y ) ) ) ) ).
% strict_mono_eq
thf(fact_112_strict__mono__mono,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( order_mono @ A @ B @ F2 ) ) ) ).
% strict_mono_mono
thf(fact_113_incseq__def,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( order_mono @ nat @ A )
= ( ^ [X4: nat > A] :
! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ A @ ( X4 @ M ) @ ( X4 @ N ) ) ) ) ) ) ).
% incseq_def
thf(fact_114_incseqD,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [F2: nat > A,I: nat,J: nat] :
( ( order_mono @ nat @ A @ F2 )
=> ( ( ord_less_eq @ nat @ I @ J )
=> ( ord_less_eq @ A @ ( F2 @ I ) @ ( F2 @ J ) ) ) ) ) ).
% incseqD
thf(fact_115_lappend__assoc,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A,Zs: coinductive_llist @ A] :
( ( coinductive_lappend @ A @ ( coinductive_lappend @ A @ Xs @ Ys ) @ Zs )
= ( coinductive_lappend @ A @ Xs @ ( coinductive_lappend @ A @ Ys @ Zs ) ) ) ).
% lappend_assoc
thf(fact_116_mono__def,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ( ( order_mono @ A @ B )
= ( ^ [F: A > B] :
! [X2: A,Y2: A] :
( ( ord_less_eq @ A @ X2 @ Y2 )
=> ( ord_less_eq @ B @ ( F @ X2 ) @ ( F @ Y2 ) ) ) ) ) ) ).
% mono_def
thf(fact_117_monoI,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B] :
( ! [X3: A,Y3: A] :
( ( ord_less_eq @ A @ X3 @ Y3 )
=> ( ord_less_eq @ B @ ( F2 @ X3 ) @ ( F2 @ Y3 ) ) )
=> ( order_mono @ A @ B @ F2 ) ) ) ).
% monoI
thf(fact_118_monoE,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ) ) ).
% monoE
thf(fact_119_monoD,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_mono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ Y ) ) ) ) ) ).
% monoD
thf(fact_120_lappend__inf,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A] :
( ~ ( coinductive_lfinite @ A @ Xs )
=> ( ( coinductive_lappend @ A @ Xs @ Ys )
= Xs ) ) ).
% lappend_inf
thf(fact_121_le__refl,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ N2 @ N2 ) ).
% le_refl
thf(fact_122_le__trans,axiom,
! [I: nat,J: nat,K: nat] :
( ( ord_less_eq @ nat @ I @ J )
=> ( ( ord_less_eq @ nat @ J @ K )
=> ( ord_less_eq @ nat @ I @ K ) ) ) ).
% le_trans
thf(fact_123_eq__imp__le,axiom,
! [M2: nat,N2: nat] :
( ( M2 = N2 )
=> ( ord_less_eq @ nat @ M2 @ N2 ) ) ).
% eq_imp_le
thf(fact_124_le__antisym,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq @ nat @ M2 @ N2 )
=> ( ( ord_less_eq @ nat @ N2 @ M2 )
=> ( M2 = N2 ) ) ) ).
% le_antisym
thf(fact_125_nat__le__linear,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq @ nat @ M2 @ N2 )
| ( ord_less_eq @ nat @ N2 @ M2 ) ) ).
% nat_le_linear
thf(fact_126_monoseq__iff,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( topological_monoseq @ A )
= ( ^ [X4: nat > A] :
( ( order_mono @ nat @ A @ X4 )
| ( order_antimono @ nat @ A @ X4 ) ) ) ) ) ).
% monoseq_iff
thf(fact_127_ex__has__least__nat,axiom,
! [A: $tType,P: A > $o,K: A,M2: A > nat] :
( ( P @ K )
=> ? [X3: A] :
( ( P @ X3 )
& ! [Y5: A] :
( ( P @ Y5 )
=> ( ord_less_eq @ nat @ ( M2 @ X3 ) @ ( M2 @ Y5 ) ) ) ) ) ).
% ex_has_least_nat
thf(fact_128_monoI1,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X5: nat > A] :
( ! [M3: nat,N3: nat] :
( ( ord_less_eq @ nat @ M3 @ N3 )
=> ( ord_less_eq @ A @ ( X5 @ M3 ) @ ( X5 @ N3 ) ) )
=> ( topological_monoseq @ A @ X5 ) ) ) ).
% monoI1
thf(fact_129_monoI2,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X5: nat > A] :
( ! [M3: nat,N3: nat] :
( ( ord_less_eq @ nat @ M3 @ N3 )
=> ( ord_less_eq @ A @ ( X5 @ N3 ) @ ( X5 @ M3 ) ) )
=> ( topological_monoseq @ A @ X5 ) ) ) ).
% monoI2
thf(fact_130_incseq__imp__monoseq,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X5: nat > A] :
( ( order_mono @ nat @ A @ X5 )
=> ( topological_monoseq @ A @ X5 ) ) ) ).
% incseq_imp_monoseq
thf(fact_131_decseq__imp__monoseq,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X5: nat > A] :
( ( order_antimono @ nat @ A @ X5 )
=> ( topological_monoseq @ A @ X5 ) ) ) ).
% decseq_imp_monoseq
thf(fact_132_monoseq__def,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( topological_monoseq @ A )
= ( ^ [X4: nat > A] :
( ! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ A @ ( X4 @ M ) @ ( X4 @ N ) ) )
| ! [M: nat,N: nat] :
( ( ord_less_eq @ nat @ M @ N )
=> ( ord_less_eq @ A @ ( X4 @ N ) @ ( X4 @ M ) ) ) ) ) ) ) ).
% monoseq_def
thf(fact_133_LeastMI2,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ! [P: A > $o,X: A,M2: A > B,Q: A > $o] :
( ( P @ X )
=> ( ! [Y3: A] :
( ( P @ Y3 )
=> ( ord_less_eq @ B @ ( M2 @ X ) @ ( M2 @ Y3 ) ) )
=> ( ! [X3: A] :
( ( P @ X3 )
=> ( ! [Y5: A] :
( ( P @ Y5 )
=> ( ord_less_eq @ B @ ( M2 @ X3 ) @ ( M2 @ Y5 ) ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( hilbert_LeastM @ A @ B @ M2 @ P ) ) ) ) ) ) ).
% LeastMI2
thf(fact_134_GreatestMI2,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ! [P: A > $o,X: A,M2: A > B,Q: A > $o] :
( ( P @ X )
=> ( ! [Y3: A] :
( ( P @ Y3 )
=> ( ord_less_eq @ B @ ( M2 @ Y3 ) @ ( M2 @ X ) ) )
=> ( ! [X3: A] :
( ( P @ X3 )
=> ( ! [Y5: A] :
( ( P @ Y5 )
=> ( ord_less_eq @ B @ ( M2 @ Y5 ) @ ( M2 @ X3 ) ) )
=> ( Q @ X3 ) ) )
=> ( Q @ ( hilbert_GreatestM @ A @ B @ M2 @ P ) ) ) ) ) ) ).
% GreatestMI2
thf(fact_135_lfilter__lappend__lfinite,axiom,
! [A: $tType,Xs: coinductive_llist @ A,P: A > $o,Ys: coinductive_llist @ A] :
( ( coinductive_lfinite @ A @ Xs )
=> ( ( coinductive_lfilter @ A @ P @ ( coinductive_lappend @ A @ Xs @ Ys ) )
= ( coinductive_lappend @ A @ ( coinductive_lfilter @ A @ P @ Xs ) @ ( coinductive_lfilter @ A @ P @ Ys ) ) ) ) ).
% lfilter_lappend_lfinite
thf(fact_136_LeastM__nat__lemma,axiom,
! [A: $tType,P: A > $o,K: A,M2: A > nat] :
( ( P @ K )
=> ( ( P @ ( hilbert_LeastM @ A @ nat @ M2 @ P ) )
& ! [Y5: A] :
( ( P @ Y5 )
=> ( ord_less_eq @ nat @ ( M2 @ ( hilbert_LeastM @ A @ nat @ M2 @ P ) ) @ ( M2 @ Y5 ) ) ) ) ) ).
% LeastM_nat_lemma
thf(fact_137_lfilter__idem,axiom,
! [A: $tType,P: A > $o,Xs: coinductive_llist @ A] :
( ( coinductive_lfilter @ A @ P @ ( coinductive_lfilter @ A @ P @ Xs ) )
= ( coinductive_lfilter @ A @ P @ Xs ) ) ).
% lfilter_idem
thf(fact_138_lfinite__lfilterI,axiom,
! [A: $tType,Xs: coinductive_llist @ A,P: A > $o] :
( ( coinductive_lfinite @ A @ Xs )
=> ( coinductive_lfinite @ A @ ( coinductive_lfilter @ A @ P @ Xs ) ) ) ).
% lfinite_lfilterI
thf(fact_139_lprefix__lfilterI,axiom,
! [A: $tType,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A,P: A > $o] :
( ( coinductive_lprefix @ A @ Xs @ Ys )
=> ( coinductive_lprefix @ A @ ( coinductive_lfilter @ A @ P @ Xs ) @ ( coinductive_lfilter @ A @ P @ Ys ) ) ) ).
% lprefix_lfilterI
thf(fact_140_lfilter__eq__lappend__lfiniteD,axiom,
! [A: $tType,P: A > $o,Xs: coinductive_llist @ A,Ys: coinductive_llist @ A,Zs: coinductive_llist @ A] :
( ( ( coinductive_lfilter @ A @ P @ Xs )
= ( coinductive_lappend @ A @ Ys @ Zs ) )
=> ( ( coinductive_lfinite @ A @ Ys )
=> ? [Us: coinductive_llist @ A,Vs: coinductive_llist @ A] :
( ( Xs
= ( coinductive_lappend @ A @ Us @ Vs ) )
& ( coinductive_lfinite @ A @ Us )
& ( Ys
= ( coinductive_lfilter @ A @ P @ Us ) )
& ( Zs
= ( coinductive_lfilter @ A @ P @ Vs ) ) ) ) ) ).
% lfilter_eq_lappend_lfiniteD
thf(fact_141_LeastM__nat__le,axiom,
! [A: $tType,P: A > $o,X: A,M2: A > nat] :
( ( P @ X )
=> ( ord_less_eq @ nat @ ( M2 @ ( hilbert_LeastM @ A @ nat @ M2 @ P ) ) @ ( M2 @ X ) ) ) ).
% LeastM_nat_le
thf(fact_142_cclfp__lowerbound,axiom,
! [A: $tType] :
( ( counta840220525attice @ A @ ( type2 @ A ) )
=> ! [F2: A > A,A5: A] :
( ( order_mono @ A @ A @ F2 )
=> ( ( ord_less_eq @ A @ ( F2 @ A5 ) @ A5 )
=> ( ord_less_eq @ A @ ( order_1929166836_cclfp @ A @ F2 ) @ A5 ) ) ) ) ).
% cclfp_lowerbound
thf(fact_143_of__nat__le__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ! [M2: nat,N2: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M2 ) @ ( semiring_1_of_nat @ A @ N2 ) )
= ( ord_less_eq @ nat @ M2 @ N2 ) ) ) ).
% of_nat_le_iff
thf(fact_144_mono__SucI1,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X5: nat > A] :
( ! [N3: nat] : ( ord_less_eq @ A @ ( X5 @ N3 ) @ ( X5 @ ( suc @ N3 ) ) )
=> ( topological_monoseq @ A @ X5 ) ) ) ).
% mono_SucI1
thf(fact_145_mono__SucI2,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X5: nat > A] :
( ! [N3: nat] : ( ord_less_eq @ A @ ( X5 @ ( suc @ N3 ) ) @ ( X5 @ N3 ) )
=> ( topological_monoseq @ A @ X5 ) ) ) ).
% mono_SucI2
thf(fact_146_Suc__le__mono,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq @ nat @ ( suc @ N2 ) @ ( suc @ M2 ) )
= ( ord_less_eq @ nat @ N2 @ M2 ) ) ).
% Suc_le_mono
thf(fact_147_Suc__leD,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq @ nat @ ( suc @ M2 ) @ N2 )
=> ( ord_less_eq @ nat @ M2 @ N2 ) ) ).
% Suc_leD
thf(fact_148_le__SucE,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq @ nat @ M2 @ ( suc @ N2 ) )
=> ( ~ ( ord_less_eq @ nat @ M2 @ N2 )
=> ( M2
= ( suc @ N2 ) ) ) ) ).
% le_SucE
thf(fact_149_le__SucI,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq @ nat @ M2 @ N2 )
=> ( ord_less_eq @ nat @ M2 @ ( suc @ N2 ) ) ) ).
% le_SucI
thf(fact_150_Suc__le__D,axiom,
! [N2: nat,M4: nat] :
( ( ord_less_eq @ nat @ ( suc @ N2 ) @ M4 )
=> ? [M3: nat] :
( M4
= ( suc @ M3 ) ) ) ).
% Suc_le_D
thf(fact_151_le__Suc__eq,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq @ nat @ M2 @ ( suc @ N2 ) )
= ( ( ord_less_eq @ nat @ M2 @ N2 )
| ( M2
= ( suc @ N2 ) ) ) ) ).
% le_Suc_eq
thf(fact_152_Suc__n__not__le__n,axiom,
! [N2: nat] :
~ ( ord_less_eq @ nat @ ( suc @ N2 ) @ N2 ) ).
% Suc_n_not_le_n
thf(fact_153_not__less__eq__eq,axiom,
! [M2: nat,N2: nat] :
( ( ~ ( ord_less_eq @ nat @ M2 @ N2 ) )
= ( ord_less_eq @ nat @ ( suc @ N2 ) @ M2 ) ) ).
% not_less_eq_eq
thf(fact_154_full__nat__induct,axiom,
! [P: nat > $o,N2: nat] :
( ! [N3: nat] :
( ! [M5: nat] :
( ( ord_less_eq @ nat @ ( suc @ M5 ) @ N3 )
=> ( P @ M5 ) )
=> ( P @ N3 ) )
=> ( P @ N2 ) ) ).
% full_nat_induct
thf(fact_155_mono__Suc,axiom,
order_mono @ nat @ nat @ suc ).
% mono_Suc
thf(fact_156_lift__Suc__antimono__le,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [F2: nat > A,N2: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq @ A @ ( F2 @ ( suc @ N3 ) ) @ ( F2 @ N3 ) )
=> ( ( ord_less_eq @ nat @ N2 @ N4 )
=> ( ord_less_eq @ A @ ( F2 @ N4 ) @ ( F2 @ N2 ) ) ) ) ) ).
% lift_Suc_antimono_le
thf(fact_157_lift__Suc__mono__le,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [F2: nat > A,N2: nat,N4: nat] :
( ! [N3: nat] : ( ord_less_eq @ A @ ( F2 @ N3 ) @ ( F2 @ ( suc @ N3 ) ) )
=> ( ( ord_less_eq @ nat @ N2 @ N4 )
=> ( ord_less_eq @ A @ ( F2 @ N2 ) @ ( F2 @ N4 ) ) ) ) ) ).
% lift_Suc_mono_le
thf(fact_158_incseq__Suc__iff,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( order_mono @ nat @ A )
= ( ^ [F: nat > A] :
! [N: nat] : ( ord_less_eq @ A @ ( F @ N ) @ ( F @ ( suc @ N ) ) ) ) ) ) ).
% incseq_Suc_iff
thf(fact_159_incseq__SucI,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X5: nat > A] :
( ! [N3: nat] : ( ord_less_eq @ A @ ( X5 @ N3 ) @ ( X5 @ ( suc @ N3 ) ) )
=> ( order_mono @ nat @ A @ X5 ) ) ) ).
% incseq_SucI
thf(fact_160_incseq__SucD,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [A5: nat > A,I: nat] :
( ( order_mono @ nat @ A @ A5 )
=> ( ord_less_eq @ A @ ( A5 @ I ) @ ( A5 @ ( suc @ I ) ) ) ) ) ).
% incseq_SucD
thf(fact_161_decseq__Suc__iff,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( order_antimono @ nat @ A )
= ( ^ [F: nat > A] :
! [N: nat] : ( ord_less_eq @ A @ ( F @ ( suc @ N ) ) @ ( F @ N ) ) ) ) ) ).
% decseq_Suc_iff
thf(fact_162_decseq__SucI,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X5: nat > A] :
( ! [N3: nat] : ( ord_less_eq @ A @ ( X5 @ ( suc @ N3 ) ) @ ( X5 @ N3 ) )
=> ( order_antimono @ nat @ A @ X5 ) ) ) ).
% decseq_SucI
thf(fact_163_decseq__SucD,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [A5: nat > A,I: nat] :
( ( order_antimono @ nat @ A @ A5 )
=> ( ord_less_eq @ A @ ( A5 @ ( suc @ I ) ) @ ( A5 @ I ) ) ) ) ).
% decseq_SucD
thf(fact_164_monoseq__Suc,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( topological_monoseq @ A )
= ( ^ [X4: nat > A] :
( ! [N: nat] : ( ord_less_eq @ A @ ( X4 @ N ) @ ( X4 @ ( suc @ N ) ) )
| ! [N: nat] : ( ord_less_eq @ A @ ( X4 @ ( suc @ N ) ) @ ( X4 @ N ) ) ) ) ) ) ).
% monoseq_Suc
thf(fact_165_real__arch__simple,axiom,
! [A: $tType] :
( ( archim1804426504_field @ A @ ( type2 @ A ) )
=> ! [X: A] :
? [N3: nat] : ( ord_less_eq @ A @ X @ ( semiring_1_of_nat @ A @ N3 ) ) ) ).
% real_arch_simple
thf(fact_166_zle__int,axiom,
! [M2: nat,N2: nat] :
( ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ M2 ) @ ( semiring_1_of_nat @ int @ N2 ) )
= ( ord_less_eq @ nat @ M2 @ N2 ) ) ).
% zle_int
thf(fact_167_transfer__int__nat__relations_I3_J,axiom,
! [X: nat,Y: nat] :
( ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ X ) @ ( semiring_1_of_nat @ int @ Y ) )
= ( ord_less_eq @ nat @ X @ Y ) ) ).
% transfer_int_nat_relations(3)
thf(fact_168_round__mono,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ int @ ( archimedean_round @ A @ X ) @ ( archimedean_round @ A @ Y ) ) ) ) ).
% round_mono
thf(fact_169_nat__le__iff,axiom,
! [X: int,N2: nat] :
( ( ord_less_eq @ nat @ ( nat2 @ X ) @ N2 )
= ( ord_less_eq @ int @ X @ ( semiring_1_of_nat @ int @ N2 ) ) ) ).
% nat_le_iff
thf(fact_170_negative__zle,axiom,
! [N2: nat,M2: nat] : ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) @ ( semiring_1_of_nat @ int @ M2 ) ) ).
% negative_zle
thf(fact_171_compl__eq__compl__iff,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ( uminus_uminus @ A @ X )
= ( uminus_uminus @ A @ Y ) )
= ( X = Y ) ) ) ).
% compl_eq_compl_iff
thf(fact_172_double__compl,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [X: A] :
( ( uminus_uminus @ A @ ( uminus_uminus @ A @ X ) )
= X ) ) ).
% double_compl
thf(fact_173_uminus__apply,axiom,
! [B: $tType,A: $tType] :
( ( uminus @ B @ ( type2 @ B ) )
=> ( ( uminus_uminus @ ( A > B ) )
= ( ^ [A6: A > B,X2: A] : ( uminus_uminus @ B @ ( A6 @ X2 ) ) ) ) ) ).
% uminus_apply
thf(fact_174_compl__le__compl__iff,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) )
= ( ord_less_eq @ A @ Y @ X ) ) ) ).
% compl_le_compl_iff
thf(fact_175_compl__le__swap2,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ Y ) @ X )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ X ) @ Y ) ) ) ).
% compl_le_swap2
thf(fact_176_compl__le__swap1,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ ( uminus_uminus @ A @ X ) )
=> ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% compl_le_swap1
thf(fact_177_compl__mono,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ Y ) @ ( uminus_uminus @ A @ X ) ) ) ) ).
% compl_mono
thf(fact_178_fun__Compl__def,axiom,
! [B: $tType,A: $tType] :
( ( uminus @ B @ ( type2 @ B ) )
=> ( ( uminus_uminus @ ( A > B ) )
= ( ^ [A6: A > B,X2: A] : ( uminus_uminus @ B @ ( A6 @ X2 ) ) ) ) ) ).
% fun_Compl_def
thf(fact_179_nat__mono,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ X @ Y )
=> ( ord_less_eq @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) ) ) ).
% nat_mono
thf(fact_180_neg__le__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [B2: A,A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ B2 ) ) ) ).
% neg_le_iff_le
thf(fact_181_le__imp__neg__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ B2 )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% le_imp_neg_le
thf(fact_182_minus__le__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ B2 )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B2 ) @ A2 ) ) ) ).
% minus_le_iff
thf(fact_183_le__minus__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A2: A,B2: A] :
( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ B2 ) )
= ( ord_less_eq @ A @ B2 @ ( uminus_uminus @ A @ A2 ) ) ) ) ).
% le_minus_iff
thf(fact_184_not__zle__0__negative,axiom,
! [N2: nat] :
~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ ( suc @ N2 ) ) ) ) ).
% not_zle_0_negative
thf(fact_185_le__nat__iff,axiom,
! [K: int,N2: nat] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ( ( ord_less_eq @ nat @ N2 @ ( nat2 @ K ) )
= ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ N2 ) @ K ) ) ) ).
% le_nat_iff
thf(fact_186_int__nat__eq,axiom,
! [Z: int] :
( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z ) )
= Z ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z ) )
= ( zero_zero @ int ) ) ) ) ).
% int_nat_eq
thf(fact_187_le__zero__eq,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A @ ( type2 @ A ) )
=> ! [N2: A] :
( ( ord_less_eq @ A @ N2 @ ( zero_zero @ A ) )
= ( N2
= ( zero_zero @ A ) ) ) ) ).
% le_zero_eq
thf(fact_188_neg__less__eq__nonneg,axiom,
! [A: $tType] :
( ( linord219039673up_add @ A @ ( type2 @ A ) )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ A2 )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_less_eq_nonneg
thf(fact_189_less__eq__neg__nonpos,axiom,
! [A: $tType] :
( ( linord219039673up_add @ A @ ( type2 @ A ) )
=> ! [A2: A] :
( ( ord_less_eq @ A @ A2 @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% less_eq_neg_nonpos
thf(fact_190_neg__le__0__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A2 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).
% neg_le_0_iff_le
thf(fact_191_neg__0__le__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A2: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ A2 ) )
= ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).
% neg_0_le_iff_le
thf(fact_192_of__nat__le__0__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ! [M2: nat] :
( ( ord_less_eq @ A @ ( semiring_1_of_nat @ A @ M2 ) @ ( zero_zero @ A ) )
= ( M2
= ( zero_zero @ nat ) ) ) ) ).
% of_nat_le_0_iff
thf(fact_193_zero__le,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A @ ( type2 @ A ) )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ).
% zero_le
thf(fact_194_less__eq__int__code_I1_J,axiom,
ord_less_eq @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ).
% less_eq_int_code(1)
thf(fact_195_Nat__Transfer_Otransfer__nat__int__function__closures_I5_J,axiom,
ord_less_eq @ int @ ( zero_zero @ int ) @ ( zero_zero @ int ) ).
% Nat_Transfer.transfer_nat_int_function_closures(5)
thf(fact_196_of__nat__0__le__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ! [N2: nat] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( semiring_1_of_nat @ A @ N2 ) ) ) ).
% of_nat_0_le_iff
thf(fact_197_transfer__nat__int__relations_I1_J,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ( nat2 @ X )
= ( nat2 @ Y ) )
= ( X = Y ) ) ) ) ).
% transfer_nat_int_relations(1)
thf(fact_198_eq__nat__nat__iff,axiom,
! [Z: int,Z4: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z4 )
=> ( ( ( nat2 @ Z )
= ( nat2 @ Z4 ) )
= ( Z = Z4 ) ) ) ) ).
% eq_nat_nat_iff
thf(fact_199_ex__nat,axiom,
( ( ^ [P2: nat > $o] :
? [X6: nat] : ( P2 @ X6 ) )
= ( ^ [P3: nat > $o] :
? [X2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X2 )
& ( P3 @ ( nat2 @ X2 ) ) ) ) ) ).
% ex_nat
thf(fact_200_all__nat,axiom,
( ( ^ [P2: nat > $o] :
! [X6: nat] : ( P2 @ X6 ) )
= ( ^ [P3: nat > $o] :
! [X2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X2 )
=> ( P3 @ ( nat2 @ X2 ) ) ) ) ) ).
% all_nat
thf(fact_201_transfer__int__nat__quantifiers_I2_J,axiom,
! [P: int > $o] :
( ( ? [X2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X2 )
& ( P @ X2 ) ) )
= ( ? [X2: nat] : ( P @ ( semiring_1_of_nat @ int @ X2 ) ) ) ) ).
% transfer_int_nat_quantifiers(2)
thf(fact_202_transfer__int__nat__quantifiers_I1_J,axiom,
! [P: int > $o] :
( ( ! [X2: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X2 )
=> ( P @ X2 ) ) )
= ( ! [X2: nat] : ( P @ ( semiring_1_of_nat @ int @ X2 ) ) ) ) ).
% transfer_int_nat_quantifiers(1)
thf(fact_203_Nat__Transfer_Otransfer__nat__int__function__closures_I9_J,axiom,
! [Z: nat] : ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( semiring_1_of_nat @ int @ Z ) ) ).
% Nat_Transfer.transfer_nat_int_function_closures(9)
thf(fact_204_nonneg__eq__int,axiom,
! [Z: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z )
=> ~ ! [M3: nat] :
( Z
!= ( semiring_1_of_nat @ int @ M3 ) ) ) ).
% nonneg_eq_int
thf(fact_205_nonneg__int__cases,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ~ ! [N3: nat] :
( K
!= ( semiring_1_of_nat @ int @ N3 ) ) ) ).
% nonneg_int_cases
thf(fact_206_zero__le__imp__eq__int,axiom,
! [K: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ K )
=> ? [N3: nat] :
( K
= ( semiring_1_of_nat @ int @ N3 ) ) ) ).
% zero_le_imp_eq_int
thf(fact_207_transfer__nat__int__relations_I3_J,axiom,
! [X: int,Y: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Y )
=> ( ( ord_less_eq @ nat @ ( nat2 @ X ) @ ( nat2 @ Y ) )
= ( ord_less_eq @ int @ X @ Y ) ) ) ) ).
% transfer_nat_int_relations(3)
thf(fact_208_int__eq__iff,axiom,
! [M2: nat,Z: int] :
( ( ( semiring_1_of_nat @ int @ M2 )
= Z )
= ( ( M2
= ( nat2 @ Z ) )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z ) ) ) ).
% int_eq_iff
thf(fact_209_nat__0__le,axiom,
! [Z: int] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ Z )
=> ( ( semiring_1_of_nat @ int @ ( nat2 @ Z ) )
= Z ) ) ).
% nat_0_le
thf(fact_210_negative__zle__0,axiom,
! [N2: nat] : ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ N2 ) ) @ ( zero_zero @ int ) ) ).
% negative_zle_0
thf(fact_211_transfer__morphism__nat__int,axiom,
nat_tr1645093318rphism @ int @ nat @ nat2 @ ( ord_less_eq @ int @ ( zero_zero @ int ) ) ).
% transfer_morphism_nat_int
thf(fact_212_imp__le__cong,axiom,
! [X: int,X7: int,P: $o,P4: $o] :
( ( X = X7 )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X7 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
=> P )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X7 )
=> P4 ) ) ) ) ).
% imp_le_cong
thf(fact_213_conj__le__cong,axiom,
! [X: int,X7: int,P: $o,P4: $o] :
( ( X = X7 )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X7 )
=> ( P = P4 ) )
=> ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X )
& P )
= ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ X7 )
& P4 ) ) ) ) ).
% conj_le_cong
thf(fact_214_le0,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N2 ) ).
% le0
thf(fact_215_nat__le__0,axiom,
! [Z: int] :
( ( ord_less_eq @ int @ Z @ ( zero_zero @ int ) )
=> ( ( nat2 @ Z )
= ( zero_zero @ nat ) ) ) ).
% nat_le_0
thf(fact_216_nat__0__iff,axiom,
! [I: int] :
( ( ( nat2 @ I )
= ( zero_zero @ nat ) )
= ( ord_less_eq @ int @ I @ ( zero_zero @ int ) ) ) ).
% nat_0_iff
thf(fact_217_le__0__eq,axiom,
! [N2: nat] :
( ( ord_less_eq @ nat @ N2 @ ( zero_zero @ nat ) )
= ( N2
= ( zero_zero @ nat ) ) ) ).
% le_0_eq
thf(fact_218_less__eq__nat_Osimps_I1_J,axiom,
! [N2: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N2 ) ).
% less_eq_nat.simps(1)
thf(fact_219_int__zle__neg,axiom,
! [N2: nat,M2: nat] :
( ( ord_less_eq @ int @ ( semiring_1_of_nat @ int @ N2 ) @ ( uminus_uminus @ int @ ( semiring_1_of_nat @ int @ M2 ) ) )
= ( ( N2
= ( zero_zero @ nat ) )
& ( M2
= ( zero_zero @ nat ) ) ) ) ).
% int_zle_neg
thf(fact_220_nat__eq__iff2,axiom,
! [M2: nat,W: int] :
( ( M2
= ( nat2 @ W ) )
= ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( W
= ( semiring_1_of_nat @ int @ M2 ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( M2
= ( zero_zero @ nat ) ) ) ) ) ).
% nat_eq_iff2
thf(fact_221_nat__eq__iff,axiom,
! [W: int,M2: nat] :
( ( ( nat2 @ W )
= M2 )
= ( ( ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( W
= ( semiring_1_of_nat @ int @ M2 ) ) )
& ( ~ ( ord_less_eq @ int @ ( zero_zero @ int ) @ W )
=> ( M2
= ( zero_zero @ nat ) ) ) ) ) ).
% nat_eq_iff
thf(fact_222_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(3)
thf(fact_223_int__eq__iff__numeral,axiom,
! [M2: nat,V: num] :
( ( ( semiring_1_of_nat @ int @ M2 )
= ( numeral_numeral @ int @ V ) )
= ( ( M2
= ( nat2 @ ( numeral_numeral @ int @ V ) ) )
& ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( numeral_numeral @ int @ V ) ) ) ) ).
% int_eq_iff_numeral
thf(fact_224_numeral__le__iff,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ! [M2: num,N2: num] :
( ( ord_less_eq @ A @ ( numeral_numeral @ A @ M2 ) @ ( numeral_numeral @ A @ N2 ) )
= ( ord_less_eq @ num @ M2 @ N2 ) ) ) ).
% numeral_le_iff
thf(fact_225_neg__numeral__le__iff,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ! [M2: num,N2: num] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M2 ) ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) )
= ( ord_less_eq @ num @ N2 @ M2 ) ) ) ).
% neg_numeral_le_iff
thf(fact_226_neg__numeral__le__zero,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ! [N2: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) @ ( zero_zero @ A ) ) ) ).
% neg_numeral_le_zero
thf(fact_227_not__zero__le__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ! [N2: num] :
~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% not_zero_le_neg_numeral
thf(fact_228_zero__le__numeral,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ! [N2: num] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( numeral_numeral @ A @ N2 ) ) ) ).
% zero_le_numeral
thf(fact_229_not__numeral__le__zero,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ! [N2: num] :
~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ N2 ) @ ( zero_zero @ A ) ) ) ).
% not_numeral_le_zero
thf(fact_230_neg__numeral__le__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ! [M2: num,N2: num] : ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ M2 ) ) @ ( numeral_numeral @ A @ N2 ) ) ) ).
% neg_numeral_le_numeral
thf(fact_231_not__numeral__le__neg__numeral,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ! [M2: num,N2: num] :
~ ( ord_less_eq @ A @ ( numeral_numeral @ A @ M2 ) @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ N2 ) ) ) ) ).
% not_numeral_le_neg_numeral
thf(fact_232_ceiling__le__neg__numeral,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A,V: num] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) )
= ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) ) ) ) ).
% ceiling_le_neg_numeral
thf(fact_233_neg__numeral__le__floor,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [V: num,X: A] :
( ( ord_less_eq @ int @ ( uminus_uminus @ int @ ( numeral_numeral @ int @ V ) ) @ ( archim2085082626_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( numeral_numeral @ A @ V ) ) @ X ) ) ) ).
% neg_numeral_le_floor
thf(fact_234_zero__le__floor,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( zero_zero @ int ) @ ( archim2085082626_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ) ).
% zero_le_floor
thf(fact_235_ceiling__le__zero,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( zero_zero @ int ) )
= ( ord_less_eq @ A @ X @ ( zero_zero @ A ) ) ) ) ).
% ceiling_le_zero
thf(fact_236_numeral__le__floor,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [V: num,X: A] :
( ( ord_less_eq @ int @ ( numeral_numeral @ int @ V ) @ ( archim2085082626_floor @ A @ X ) )
= ( ord_less_eq @ A @ ( numeral_numeral @ A @ V ) @ X ) ) ) ).
% numeral_le_floor
thf(fact_237_ceiling__le__numeral,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A,V: num] :
( ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ X ) @ ( numeral_numeral @ int @ V ) )
= ( ord_less_eq @ A @ X @ ( numeral_numeral @ A @ V ) ) ) ) ).
% ceiling_le_numeral
thf(fact_238_floor__le__round,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A] : ( ord_less_eq @ int @ ( archim2085082626_floor @ A @ X ) @ ( archimedean_round @ A @ X ) ) ) ).
% floor_le_round
thf(fact_239_floor__mono,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ int @ ( archim2085082626_floor @ A @ X ) @ ( archim2085082626_floor @ A @ Y ) ) ) ) ).
% floor_mono
thf(fact_240_floor__le__ceiling,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A] : ( ord_less_eq @ int @ ( archim2085082626_floor @ A @ X ) @ ( archimedean_ceiling @ A @ X ) ) ) ).
% floor_le_ceiling
thf(fact_241_ceiling__mono,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ord_less_eq @ int @ ( archimedean_ceiling @ A @ Y ) @ ( archimedean_ceiling @ A @ X ) ) ) ) ).
% ceiling_mono
thf(fact_242_ceiling__ge__round,axiom,
! [A: $tType] :
( ( archim1727834104eiling @ A @ ( type2 @ A ) )
=> ! [X: A] : ( ord_less_eq @ int @ ( archimedean_round @ A @ X ) @ ( archimedean_ceiling @ A @ X ) ) ) ).
% ceiling_ge_round
thf(fact_243_nat__ceiling__le__eq,axiom,
! [X: real,A2: nat] :
( ( ord_less_eq @ nat @ ( nat2 @ ( archimedean_ceiling @ real @ X ) ) @ A2 )
= ( ord_less_eq @ real @ X @ ( semiring_1_of_nat @ real @ A2 ) ) ) ).
% nat_ceiling_le_eq
thf(fact_244_numeral__le__real__of__nat__iff,axiom,
! [N2: num,M2: nat] :
( ( ord_less_eq @ real @ ( numeral_numeral @ real @ N2 ) @ ( semiring_1_of_nat @ real @ M2 ) )
= ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ N2 ) @ M2 ) ) ).
% numeral_le_real_of_nat_iff
thf(fact_245_complete__real,axiom,
! [S: set @ real] :
( ? [X8: real] : ( member @ real @ X8 @ S )
=> ( ? [Z5: real] :
! [X3: real] :
( ( member @ real @ X3 @ S )
=> ( ord_less_eq @ real @ X3 @ Z5 ) )
=> ? [Y3: real] :
( ! [X8: real] :
( ( member @ real @ X8 @ S )
=> ( ord_less_eq @ real @ X8 @ Y3 ) )
& ! [Z5: real] :
( ! [X3: real] :
( ( member @ real @ X3 @ S )
=> ( ord_less_eq @ real @ X3 @ Z5 ) )
=> ( ord_less_eq @ real @ Y3 @ Z5 ) ) ) ) ) ).
% complete_real
thf(fact_246_real__nat__ceiling__ge,axiom,
! [X: real] : ( ord_less_eq @ real @ X @ ( semiring_1_of_nat @ real @ ( nat2 @ ( archimedean_ceiling @ real @ X ) ) ) ) ).
% real_nat_ceiling_ge
thf(fact_247_nat__floor__neg,axiom,
! [X: real] :
( ( ord_less_eq @ real @ X @ ( zero_zero @ real ) )
=> ( ( nat2 @ ( archim2085082626_floor @ real @ X ) )
= ( zero_zero @ nat ) ) ) ).
% nat_floor_neg
thf(fact_248_le__nat__floor,axiom,
! [X: nat,A2: real] :
( ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ X ) @ A2 )
=> ( ord_less_eq @ nat @ X @ ( nat2 @ ( archim2085082626_floor @ real @ A2 ) ) ) ) ).
% le_nat_floor
thf(fact_249_enat__ord__number_I1_J,axiom,
! [M2: num,N2: num] :
( ( ord_less_eq @ extended_enat @ ( numeral_numeral @ extended_enat @ M2 ) @ ( numeral_numeral @ extended_enat @ N2 ) )
= ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ M2 ) @ ( numeral_numeral @ nat @ N2 ) ) ) ).
% enat_ord_number(1)
thf(fact_250_le__Suc__numeral,axiom,
! [N2: nat,K: num] :
( ( ord_less_eq @ nat @ ( suc @ N2 ) @ ( numeral_numeral @ nat @ K ) )
= ( ord_less_eq @ nat @ N2 @ ( pred_numeral @ K ) ) ) ).
% le_Suc_numeral
thf(fact_251_le__numeral__Suc,axiom,
! [K: num,N2: nat] :
( ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ K ) @ ( suc @ N2 ) )
= ( ord_less_eq @ nat @ ( pred_numeral @ K ) @ N2 ) ) ).
% le_numeral_Suc
thf(fact_252_ile0__eq,axiom,
! [N2: extended_enat] :
( ( ord_less_eq @ extended_enat @ N2 @ ( zero_zero @ extended_enat ) )
= ( N2
= ( zero_zero @ extended_enat ) ) ) ).
% ile0_eq
thf(fact_253_i0__lb,axiom,
! [N2: extended_enat] : ( ord_less_eq @ extended_enat @ ( zero_zero @ extended_enat ) @ N2 ) ).
% i0_lb
thf(fact_254_floor__eq4,axiom,
! [N2: nat,X: real] :
( ( ord_less_eq @ real @ ( semiring_1_of_nat @ real @ N2 ) @ X )
=> ( ( ord_less @ real @ X @ ( semiring_1_of_nat @ real @ ( suc @ N2 ) ) )
=> ( ( nat2 @ ( archim2085082626_floor @ real @ X ) )
= N2 ) ) ) ).
% floor_eq4
thf(fact_255_numeral__le__enat__iff,axiom,
! [M2: num,N2: nat] :
( ( ord_less_eq @ extended_enat @ ( numeral_numeral @ extended_enat @ M2 ) @ ( extended_enat2 @ N2 ) )
= ( ord_less_eq @ nat @ ( numeral_numeral @ nat @ M2 ) @ N2 ) ) ).
% numeral_le_enat_iff
%----Type constructors (76)
thf(tcon_fun___Countable__Complete__Lattices_Ocountable__complete__lattice,axiom,
! [A7: $tType,A8: $tType] :
( ( counta840220525attice @ A8 @ ( type2 @ A8 ) )
=> ( counta840220525attice @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Complete__Lattices_Ocomplete__lattice,axiom,
! [A7: $tType,A8: $tType] :
( ( comple187826305attice @ A8 @ ( type2 @ A8 ) )
=> ( comple187826305attice @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Lattices_Osemilattice__inf,axiom,
! [A7: $tType,A8: $tType] :
( ( semilattice_inf @ A8 @ ( type2 @ A8 ) )
=> ( semilattice_inf @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Lattices_Oboolean__algebra,axiom,
! [A7: $tType,A8: $tType] :
( ( boolean_algebra @ A8 @ ( type2 @ A8 ) )
=> ( boolean_algebra @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Orderings_Opreorder,axiom,
! [A7: $tType,A8: $tType] :
( ( preorder @ A8 @ ( type2 @ A8 ) )
=> ( preorder @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Lattices_Olattice,axiom,
! [A7: $tType,A8: $tType] :
( ( lattice @ A8 @ ( type2 @ A8 ) )
=> ( lattice @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Orderings_Oorder,axiom,
! [A7: $tType,A8: $tType] :
( ( order @ A8 @ ( type2 @ A8 ) )
=> ( order @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Orderings_Oord,axiom,
! [A7: $tType,A8: $tType] :
( ( ord @ A8 @ ( type2 @ A8 ) )
=> ( ord @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Groups_Ouminus,axiom,
! [A7: $tType,A8: $tType] :
( ( uminus @ A8 @ ( type2 @ A8 ) )
=> ( uminus @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_Int_Oint___Groups_Olinordered__ab__group__add,axiom,
linord219039673up_add @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Groups_Oordered__ab__group__add,axiom,
ordered_ab_group_add @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Rings_Olinordered__semidom,axiom,
linordered_semidom @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Lattices_Osemilattice__inf_1,axiom,
semilattice_inf @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Rings_Olinordered__idom,axiom,
linordered_idom @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Orderings_Opreorder_2,axiom,
preorder @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Orderings_Olinorder,axiom,
linorder @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Lattices_Olattice_3,axiom,
lattice @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Orderings_Oorder_4,axiom,
order @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Orderings_Oord_5,axiom,
ord @ int @ ( type2 @ int ) ).
thf(tcon_Int_Oint___Groups_Ouminus_6,axiom,
uminus @ int @ ( type2 @ int ) ).
thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
canoni770627133id_add @ nat @ ( type2 @ nat ) ).
thf(tcon_Nat_Onat___Rings_Olinordered__semidom_7,axiom,
linordered_semidom @ nat @ ( type2 @ nat ) ).
thf(tcon_Nat_Onat___Lattices_Osemilattice__inf_8,axiom,
semilattice_inf @ nat @ ( type2 @ nat ) ).
thf(tcon_Nat_Onat___Orderings_Opreorder_9,axiom,
preorder @ nat @ ( type2 @ nat ) ).
thf(tcon_Nat_Onat___Orderings_Olinorder_10,axiom,
linorder @ nat @ ( type2 @ nat ) ).
thf(tcon_Nat_Onat___Lattices_Olattice_11,axiom,
lattice @ nat @ ( type2 @ nat ) ).
thf(tcon_Nat_Onat___Orderings_Oorder_12,axiom,
order @ nat @ ( type2 @ nat ) ).
thf(tcon_Nat_Onat___Orderings_Oord_13,axiom,
ord @ nat @ ( type2 @ nat ) ).
thf(tcon_Num_Onum___Orderings_Opreorder_14,axiom,
preorder @ num @ ( type2 @ num ) ).
thf(tcon_Num_Onum___Orderings_Olinorder_15,axiom,
linorder @ num @ ( type2 @ num ) ).
thf(tcon_Num_Onum___Orderings_Oorder_16,axiom,
order @ num @ ( type2 @ num ) ).
thf(tcon_Num_Onum___Orderings_Oord_17,axiom,
ord @ num @ ( type2 @ num ) ).
thf(tcon_Set_Oset___Countable__Complete__Lattices_Ocountable__complete__lattice_18,axiom,
! [A7: $tType] : ( counta840220525attice @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Complete__Lattices_Ocomplete__lattice_19,axiom,
! [A7: $tType] : ( comple187826305attice @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Lattices_Osemilattice__inf_20,axiom,
! [A7: $tType] : ( semilattice_inf @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Lattices_Oboolean__algebra_21,axiom,
! [A7: $tType] : ( boolean_algebra @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Orderings_Opreorder_22,axiom,
! [A7: $tType] : ( preorder @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Lattices_Olattice_23,axiom,
! [A7: $tType] : ( lattice @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder_24,axiom,
! [A7: $tType] : ( order @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Orderings_Oord_25,axiom,
! [A7: $tType] : ( ord @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Groups_Ouminus_26,axiom,
! [A7: $tType] : ( uminus @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_HOL_Obool___Countable__Complete__Lattices_Ocountable__complete__lattice_27,axiom,
counta840220525attice @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Complete__Lattices_Ocomplete__lattice_28,axiom,
comple187826305attice @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Lattices_Osemilattice__inf_29,axiom,
semilattice_inf @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Lattices_Oboolean__algebra_30,axiom,
boolean_algebra @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Opreorder_31,axiom,
preorder @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Olinorder_32,axiom,
linorder @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Lattices_Olattice_33,axiom,
lattice @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Oorder_34,axiom,
order @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Oord_35,axiom,
ord @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Groups_Ouminus_36,axiom,
uminus @ $o @ ( type2 @ $o ) ).
thf(tcon_Real_Oreal___Archimedean__Field_Oarchimedean__field,axiom,
archim1804426504_field @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Archimedean__Field_Ofloor__ceiling,axiom,
archim1727834104eiling @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Groups_Olinordered__ab__group__add_37,axiom,
linord219039673up_add @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Groups_Oordered__ab__group__add_38,axiom,
ordered_ab_group_add @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Rings_Olinordered__semidom_39,axiom,
linordered_semidom @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Lattices_Osemilattice__inf_40,axiom,
semilattice_inf @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Rings_Olinordered__idom_41,axiom,
linordered_idom @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Orderings_Opreorder_42,axiom,
preorder @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Orderings_Olinorder_43,axiom,
linorder @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Lattices_Olattice_44,axiom,
lattice @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Orderings_Oorder_45,axiom,
order @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Orderings_Oord_46,axiom,
ord @ real @ ( type2 @ real ) ).
thf(tcon_Real_Oreal___Groups_Ouminus_47,axiom,
uminus @ real @ ( type2 @ real ) ).
thf(tcon_Extended__Nat_Oenat___Countable__Complete__Lattices_Ocountable__complete__lattice_48,axiom,
counta840220525attice @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Extended__Nat_Oenat___Groups_Ocanonically__ordered__monoid__add_49,axiom,
canoni770627133id_add @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Extended__Nat_Oenat___Complete__Lattices_Ocomplete__lattice_50,axiom,
comple187826305attice @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Extended__Nat_Oenat___Lattices_Osemilattice__inf_51,axiom,
semilattice_inf @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Extended__Nat_Oenat___Orderings_Opreorder_52,axiom,
preorder @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Extended__Nat_Oenat___Orderings_Olinorder_53,axiom,
linorder @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Extended__Nat_Oenat___Lattices_Olattice_54,axiom,
lattice @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oorder_55,axiom,
order @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Extended__Nat_Oenat___Orderings_Oord_56,axiom,
ord @ extended_enat @ ( type2 @ extended_enat ) ).
thf(tcon_Coinductive__List_Ollist___Orderings_Opreorder_57,axiom,
! [A7: $tType] : ( preorder @ ( coinductive_llist @ A7 ) @ ( type2 @ ( coinductive_llist @ A7 ) ) ) ).
thf(tcon_Coinductive__List_Ollist___Orderings_Oorder_58,axiom,
! [A7: $tType] : ( order @ ( coinductive_llist @ A7 ) @ ( type2 @ ( coinductive_llist @ A7 ) ) ) ).
thf(tcon_Coinductive__List_Ollist___Orderings_Oord_59,axiom,
! [A7: $tType] : ( ord @ ( coinductive_llist @ A7 ) @ ( type2 @ ( coinductive_llist @ A7 ) ) ) ).
%----Conjectures (1)
thf(conj_0,conjecture,
coinductive_lprefix @ a @ ( inf_inf @ ( coinductive_llist @ a ) @ xs @ ys ) @ ys ).
%------------------------------------------------------------------------------