TPTP Problem File: DAT139^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT139^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Data Structures
% Problem : Coinductive list prefix 21
% Version : [Bla16] axioms : Especial.
% English :
% Refs : [Loc10] Lochbihler (2010), Coinductive
% : [RB15] Reynolds & Blanchette (2015), A Decision Procedure for
% : [Bla16] Blanchette (2016), Email to Geoff Sutcliffe
% Source : [Bla16]
% Names : coinductive_list_prefix__21.p [Bla16]
% Status : Theorem
% Rating : 1.00 v7.1.0
% Syntax : Number of formulae : 22 ( 3 unt; 14 typ; 0 def)
% Number of atoms : 13 ( 3 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 62 ( 0 ~; 0 |; 0 &; 57 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 20 ( 20 >; 0 *; 0 +; 0 <<)
% Number of symbols : 14 ( 12 usr; 1 con; 0-5 aty)
% Number of variables : 17 ( 3 ^; 6 !; 0 ?; 17 :)
% ( 8 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2016-07-13 14:40:32.792
%------------------------------------------------------------------------------
%----Could-be-implicit typings (6)
thf(ty_t_Coinductive__List_Ollist,type,
coinductive_llist: $tType > $tType ).
thf(ty_t_Code__Numeral_Onatural,type,
code_natural: $tType ).
thf(ty_t_Product__Type_Oprod,type,
product_prod: $tType > $tType > $tType ).
thf(ty_t_Typerep_Otyperep,type,
typerep: $tType ).
thf(ty_t_Predicate_Opred,type,
pred: $tType > $tType ).
thf(ty_t_itself,type,
itself: $tType > $tType ).
%----Explicit typings (8)
thf(sy_cl_Typerep_Otyperep,type,
typerep2:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Quickcheck__Random_Orandom,type,
quickcheck_random:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_c_Pure_Otype,type,
type:
!>[A: $tType] : ( itself @ A ) ).
thf(sy_c_Random__Pred_Oiter,type,
random_iter:
!>[A: $tType] : ( code_natural > code_natural > ( product_prod @ code_natural @ code_natural ) > ( pred @ A ) ) ).
thf(sy_c_Random__Pred_Oiter_H,type,
random_iter2:
!>[A: $tType] : ( ( itself @ A ) > code_natural > code_natural > ( product_prod @ code_natural @ code_natural ) > ( pred @ A ) ) ).
thf(sy_c_Typerep_Otyperep_Otyperep__of,type,
typerep_of:
!>[A: $tType] : ( ( ( itself @ A ) > typerep ) > A > typerep ) ).
thf(sy_c_Typerep_Otyperep__class_Otyperep,type,
typerep_typerep:
!>[A: $tType] : ( ( itself @ A ) > typerep ) ).
thf(sy_c_Typerep_Otyperep__class_Otyperep__of,type,
typerep_typerep_of:
!>[A: $tType] : ( A > typerep ) ).
%----Relevant facts (3)
thf(fact_0_typerep_Otyperep__of__def,axiom,
! [A: $tType] :
( ( typerep_of @ A )
= ( ^ [Typerep: ( itself @ A ) > typerep,X: A] : ( Typerep @ ( type @ A ) ) ) ) ).
% typerep.typerep_of_def
thf(fact_1_Random__Pred_Oiter__def,axiom,
! [A: $tType] :
( ( quickcheck_random @ A @ ( type @ A ) )
=> ( ( random_iter @ A )
= ( random_iter2 @ A @ ( type @ A ) ) ) ) ).
% Random_Pred.iter_def
thf(fact_2_typerep__of__def,axiom,
! [A: $tType] :
( ( typerep2 @ A @ ( type @ A ) )
=> ( ( typerep_typerep_of @ A )
= ( ^ [X: A] : ( typerep_typerep @ A @ ( type @ A ) ) ) ) ) ).
% typerep_of_def
%----Type constructors (4)
thf(tcon_Predicate_Opred___Typerep_Otyperep,axiom,
! [A2: $tType] :
( ( typerep2 @ A2 @ ( type @ A2 ) )
=> ( typerep2 @ ( pred @ A2 ) @ ( type @ ( pred @ A2 ) ) ) ) ).
thf(tcon_Typerep_Otyperep___Typerep_Otyperep_1,axiom,
typerep2 @ typerep @ ( type @ typerep ) ).
thf(tcon_Coinductive__List_Ollist___Quickcheck__Random_Orandom,axiom,
! [A2: $tType] :
( ( quickcheck_random @ A2 @ ( type @ A2 ) )
=> ( quickcheck_random @ ( coinductive_llist @ A2 ) @ ( type @ ( coinductive_llist @ A2 ) ) ) ) ).
thf(tcon_Coinductive__List_Ollist___Typerep_Otyperep_2,axiom,
! [A2: $tType] :
( ( typerep2 @ A2 @ ( type @ A2 ) )
=> ( typerep2 @ ( coinductive_llist @ A2 ) @ ( type @ ( coinductive_llist @ A2 ) ) ) ) ).
%----Conjectures (1)
thf(conj_0,conjecture,
$false ).
%------------------------------------------------------------------------------